op_converter.h 15.0 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
26
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
27
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
39

40 41
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
42 43
                          const framework::Scope& scope,
                          bool test_mode = false) {}
44

45 46
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
47 48
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
49 50
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
51
    framework::OpDesc op_desc(op, nullptr);
52 53

    OpConverter* it{nullptr};
L
Luo Tao 已提交
54

55
    if (op_desc.Type() == "mul") {
S
Shang Zhizhou 已提交
56 57 58 59 60 61
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op mul's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
62 63
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
64
        it = Registry<OpConverter>::Global().Lookup("fc");
65 66
      }
    }
N
nhzlx 已提交
67 68 69 70 71 72
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
73
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
S
Shang Zhizhou 已提交
74 75 76 77 78 79
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
N
nhzlx 已提交
80 81 82 83
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
S
Shang Zhizhou 已提交
84 85 86 87
        PADDLE_ENFORCE_GT(
            add_weight_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
88 89
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
S
Shang Zhizhou 已提交
90 91 92
        PADDLE_ENFORCE_NOT_NULL(
            it, platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
N
nhzlx 已提交
93
      } else {
S
Shang Zhizhou 已提交
94 95 96 97
        PADDLE_ENFORCE_GT(
            add_tensor_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
98 99
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
100
      }
S
Shang Zhizhou 已提交
101 102 103
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
104 105 106
    }

    if (op_desc.Type() == "depthwise_conv2d") {
107
      it = Registry<OpConverter>::Global().Lookup("conv2d");
108 109 110 111 112 113
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "depthwise_conv2d_transpose") {
      it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
S
Shang Zhizhou 已提交
114 115 116
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
117
    }
118 119 120 121 122 123 124 125 126 127 128 129
    if (op_desc.Type() == "transpose2") {
      it = Registry<OpConverter>::Global().Lookup("transpose");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "flatten2") {
      it = Registry<OpConverter>::Global().Lookup("flatten");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
W
Wangzheee 已提交
130 131 132 133 134 135 136
    // reshape2 == reshape
    if (op_desc.Type() == "reshape2") {
      it = Registry<OpConverter>::Global().Lookup("reshape");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
137
    if (!it) {
138
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
139
    }
S
Shang Zhizhou 已提交
140 141 142
    PADDLE_ENFORCE_NOT_NULL(
        it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                            op_desc.Type()));
143

144
    it->SetEngine(engine);
145
    (*it)(op, scope, test_mode);
146

147
    size_t output_num = op_desc.OutputNames().size();
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
          BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
        float out_scale = BOOST_GET_CONST(
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
178 179 180 181 182
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
210 211
      }
    }
L
Luo Tao 已提交
212 213
  }

Y
Yan Chunwei 已提交
214 215
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
216
  void ConvertBlock(const framework::proto::BlockDesc& block,
217 218
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
219
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
220
    for (int i = 0; i < block.ops_size(); i++) {
221
      const auto& op = block.ops(i);
222
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
223 224 225
    }
  }

N
nhzlx 已提交
226
  // The scope  here should be inited with the parameter vars.
227 228 229 230 231 232
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
233
    bool all_dynamic_shape_set = true;
234 235 236
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
237 238 239 240 241 242 243
      PADDLE_ENFORCE_NOT_NULL(
          var, platform::errors::NotFound("no variable called %s in block.",
                                          input.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
244
      auto var_shape = var->GetShape();
245 246 247 248 249 250
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
251 252 253 254 255 256 257
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
            PADDLE_ENFORCE_EQ(min_input_shape[i], optim_input_shape[i],
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(var_shape, input));
      }
283
    }
284 285 286 287
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set, true,
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
288 289 290 291 292 293
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
294
    engine->ClearWeights();
295 296
  }

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
312 313
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
314 315
  virtual ~OpConverter() {}

L
Luo Tao 已提交
316 317 318
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

319 320 321
 protected:
  bool test_mode_;

L
Luo Tao 已提交
322 323 324 325 326
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
327
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
328
  std::mutex mut_;
L
Luo Tao 已提交
329 330
};

331 332 333 334
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

335 336 337
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
338 339 340
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
341 342 343 344 345 346 347 348
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

349 350 351
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
352
      TouchConverterRegister_##op_type__();