hogwild_worker.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/data_type.h"
16
#include "paddle/fluid/framework/device_worker.h"
17
#include "paddle/fluid/framework/device_worker_factory.h"
18
#include "paddle/fluid/operators/distributed/distributed.h"
19
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
20
#include "paddle/fluid/platform/lodtensor_printer.h"
21 22 23 24

namespace paddle {
namespace framework {

25
void HogwildWorker::Initialize(const TrainerDesc &desc) {
D
dongdaxiang 已提交
26
  fetch_config_ = desc.fetch_config();
27 28
  param_ = desc.hogwild_param();
  skip_ops_.resize(param_.skip_ops_size());
29
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
30 31
    skip_ops_[i] = param_.skip_ops(i);
  }
32
  use_cvm_ = desc.use_cvm();
33
  thread_barrier_ = desc.thread_barrier();
34 35 36 37 38 39 40 41 42 43 44 45 46 47

  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }

  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
D
dongdaxiang 已提交
48 49
}

50 51
void HogwildWorker::CreateThreadOperators(const ProgramDesc &program) {
  auto &block = program.Block(0);
52
  op_names_.clear();
53
  for (auto &op_desc : block.AllOps()) {
54 55
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
56
    OperatorBase *local_op_ptr = local_op.release();
57 58 59 60 61
    ops_.push_back(local_op_ptr);
    continue;
  }
}

62 63
void HogwildWorker::CreateThreadScope(const ProgramDesc &program) {
  auto &block = program.Block(0);
64 65 66 67 68

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
69 70

  for (auto &var : block.AllVars()) {
71
    if (var->Persistable()) {
72
      auto *ptr = root_scope_->Var(var->Name());
73
      InitializeVariable(ptr, var->GetType());
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
      if (stat_var_name_map_.find(var->Name()) != stat_var_name_map_.end() &&
          thread_id_ != 0) {
        int tensor_dim =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>()->numel();
        auto *ptr1 = thread_scope_->Var(var->Name());
        InitializeVariable(ptr1, var->GetType());
        LoDTensor *thread_tensor = ptr1->GetMutable<LoDTensor>();
        LoDTensor *root_tensor =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>();
#define MemsetCallback(cpp_type, proto_type)                     \
  do {                                                           \
    if (root_tensor->type() == proto_type) {                     \
      SetZero<cpp_type>(thread_tensor, root_tensor, tensor_dim); \
    }                                                            \
  } while (0)
        _ForEachDataType_(MemsetCallback);
      }
91
    } else {
92
      auto *ptr = thread_scope_->Var(var->Name());
93 94 95 96 97
      InitializeVariable(ptr, var->GetType());
    }
  }
}

98 99 100 101 102 103 104
template <typename T>
void HogwildWorker::SetZero(LoDTensor *tensor, LoDTensor *root_tensor,
                            int tensor_dim) {
  T *ptr = tensor->mutable_data<T>(root_tensor->dims(), platform::CPUPlace());
  memset(ptr, 0, sizeof(T) * tensor_dim);
}

105
void HogwildWorker::BindingDataFeedMemory() {
106
  const std::vector<std::string> &input_feed =
107
      device_reader_->GetUseSlotAlias();
108
  for (auto name : input_feed) {
109
    device_reader_->AddFeedVar(thread_scope_->FindVar(name), name);
110 111 112
  }
}

113
void HogwildWorker::CreateDeviceResource(const ProgramDesc &main_prog) {
114 115 116 117 118 119
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
120
  device_reader_->Start();
121 122
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
123
  for (auto &op : ops_) {
124 125 126 127 128 129 130 131 132 133 134 135
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
D
dongdaxiang 已提交
136
  uint64_t total_inst = 0;
137
  while ((cur_batch = device_reader_->Next()) > 0) {
138
    VLOG(3) << "read a batch in thread " << thread_id_;
139 140 141 142
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
143 144 145 146 147 148 149
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (ops_[i]->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
150
      timeline.Start();
151
      VLOG(3) << "Going to run op " << op_name[i];
152 153 154
      if (!need_skip) {
        ops_[i]->Run(*thread_scope_, place_);
      }
155
      VLOG(3) << "Op " << op_name[i] << " Finished";
156 157 158 159
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

    if (need_dump_field_) {
      size_t batch_size = device_reader_->GetCurBatchSize();
      std::vector<std::string> ars(batch_size);
      for (auto &ar : ars) {
        ar.clear();
      }
      auto &ins_id_vec = device_reader_->GetInsIdVec();
      auto &ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto &field : dump_fields_) {
        Variable *var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor *tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
        for (size_t i = 0; i < batch_size; ++i) {
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
      if (need_dump_param_ && thread_id_ == 0) {
        DumpParam(batch_cnt);
      }
    }

D
dongdaxiang 已提交
203
    total_inst += cur_batch;
204
    ++batch_cnt;
D
dongdaxiang 已提交
205
    PrintFetchVars();
206 207 208 209 210 211 212
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
213
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
214
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
215 216
      }
    }
D
dongdaxiang 已提交
217
    thread_scope_->DropKids();
218 219
    timeline.Start();
  }
220 221 222 223 224

  if (need_dump_field_) {
    writer_.Flush();
  }

225 226 227 228 229 230
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
231 232
}

233 234 235 236
void HogwildWorker::SetChannelWriter(ChannelObject<std::string> *queue) {
  writer_.Reset(queue);
}

237 238 239 240
void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);

  // how to accumulate fetched values here
241
  device_reader_->Start();
242
  int cur_batch;
243
  while ((cur_batch = device_reader_->Next()) > 0) {
244
    for (auto &op : ops_) {
245 246 247 248 249 250 251 252 253 254
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
255 256
    }

D
dongdaxiang 已提交
257
    PrintFetchVars();
D
dongdaxiang 已提交
258
    thread_scope_->DropKids();
259
  }
260 261 262 263 264 265
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
266 267
}

D
dongdaxiang 已提交
268 269 270 271
void HogwildWorker::PrintFetchVars() {
  // call count
  batch_num_++;
  int batch_per_print = fetch_config_.print_period();
D
dongdaxiang 已提交
272
  if (thread_id_ == 0) {
D
dongdaxiang 已提交
273 274
    if (batch_num_ % batch_per_print == 0) {
      int fetch_var_num = fetch_config_.fetch_var_names_size();
D
dongdaxiang 已提交
275
      for (int i = 0; i < fetch_var_num; ++i) {
D
dongdaxiang 已提交
276
        platform::PrintVar(thread_scope_, fetch_config_.fetch_var_names(i),
D
dongdaxiang 已提交
277
                           fetch_config_.fetch_var_str_format(i));
D
dongdaxiang 已提交
278 279 280 281 282
      }
    }
  }
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
void HogwildWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

void HogwildWorker::DumpParam(const int batch_id) {
  std::ostringstream os;
  for (auto &param : dump_param_) {
    os.str("");
    Variable *var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
    os << "(" << batch_id << "," << param << ")"
       << PrintLodTensor(tensor, 0, len);
    writer_ << os.str();
  }
}

303 304
}  // end namespace framework
}  // end namespace paddle