pool_cudnn_op.cu.cc 14.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <string>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/math/math_function.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/cudnn_helper.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using DataLayout = platform::DataLayout;
using PoolingMode = platform::PoolingMode;
K
update  
Kexin Zhao 已提交
29 30
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
C
chengduoZH 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43
DataLayout getLayoutFromStr(std::string data_format) {
  if (data_format == "NHWC") {
    return DataLayout::kNHWC;
  } else if (data_format == "NCHW") {
    return DataLayout::kNCHW;
  } else if (data_format == "NCDHW") {
    return DataLayout::kNCDHW;
  } else {
    return DataLayout::kNCDHW;
  }
}

C
chengduoZH 已提交
44
template <typename T>
45
class PoolCUDNNOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
46 47
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
48 49 50 51
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("Pool operator CUDA kernel must use "
                                          "CUDAPlace rather than CPUPlace."));
C
chengduoZH 已提交
52 53 54

    const Tensor *input = ctx.Input<Tensor>("X");
    Tensor *output = ctx.Output<Tensor>("Out");
55
    output->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
56
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
57
    bool exclusive = ctx.Attr<bool>("exclusive");
58
    bool adaptive = ctx.Attr<bool>("adaptive");
C
chengduoZH 已提交
59 60 61
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = input->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
77 78
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
79
        paddings.erase(paddings.begin() + i + 1);
C
chengduoZH 已提交
80 81 82
      }
    }

83 84 85 86 87 88 89 90 91 92 93
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

    const std::string str_NCHW = "NCHW", str_NHWC = "NHWC";
    const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC";

    // -----------------transformed tensor ------------------------

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());
C
chengduoZH 已提交
94 95
    DataLayout layout;

96
    if (data_format == str_NDHWC) {
C
chengduoZH 已提交
97
      layout = DataLayout::kNCDHW;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 4, 1, 2, 3};

      // input
      transformed_input.Resize(input->dims());

      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[4];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      in_dims_vec[4] = input->dims()[3];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5;
      trans5(dev_ctx, *input, &transformed_input, axis);

      // output
      transformed_output.Resize(output->dims());

      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[4];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      out_dims_vec[4] = output->dims()[3];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));

    } else {
      layout = getLayoutFromStr(data_format);
      transformed_input = *input;
      transformed_output = *output;
C
chengduoZH 已提交
130
    }
C
chengduoZH 已提交
131

132 133 134 135 136 137 138 139 140
    const T *tranformed_input_data = transformed_input.data<T>();
    T *tranformed_output_data = transformed_output.mutable_data<T>(
        transformed_output.dims(), ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;

C
chengduoZH 已提交
141
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
142
        layout, framework::vectorize<int>(transformed_input.dims()));
C
chengduoZH 已提交
143
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
144
        layout, framework::vectorize<int>(transformed_output.dims()));
C
chengduoZH 已提交
145 146 147 148 149

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
150 151
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : PoolingMode::kAverageInclusive;
C
chengduoZH 已提交
152 153 154 155 156 157 158
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
K
update  
Kexin Zhao 已提交
159
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
160

161
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnPoolingForward(
162 163 164 165 166 167 168 169 170 171 172
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc,
        tranformed_input_data, &beta, cudnn_output_desc,
        tranformed_output_data));
    // add
    if (data_format == str_NDHWC) {
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 2, 3, 4, 1};
      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v2;
      trans5_v2(dev_ctx, transformed_output, output, axis);
    }
C
chengduoZH 已提交
173 174 175 176
  }
};

template <typename T>
177
class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
178 179
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
180 181 182 183
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("Pool operator CUDA kernel must use "
                                          "CUDAPlace rather than CPUPlace."));
C
chengduoZH 已提交
184 185 186 187 188 189 190

    const Tensor *input = ctx.Input<Tensor>("X");
    const Tensor *output = ctx.Input<Tensor>("Out");
    const Tensor *output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

C
chengduoZH 已提交
191
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
192
    bool exclusive = ctx.Attr<bool>("exclusive");
193
    bool adaptive = ctx.Attr<bool>("adaptive");
C
chengduoZH 已提交
194 195 196
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = input->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
212 213
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
214
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
215
      }
C
chengduoZH 已提交
216 217
    }

218 219 220
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }
C
chengduoZH 已提交
221

222 223 224 225 226 227 228
    // ------- tensor grad --------------
    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());
    Tensor transformed_output_grad(output_grad->type());

    input_grad->mutable_data<T>(ctx.GetPlace());
    Tensor transformed_input_grad(input_grad->type());
C
chengduoZH 已提交
229
    DataLayout layout;
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    const std::string str_NCHW = "NCHW", str_NHWC = "NHWC";
    const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC";
    if (data_format == str_NDHWC) {
      layout = DataLayout::kNCDHW;
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 4, 1, 2, 3};

      // input
      transformed_input.Resize(input->dims());
      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[4];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      in_dims_vec[4] = input->dims()[3];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5;
      trans5(dev_ctx, *input, &transformed_input, axis);

      // output
      transformed_output.Resize(output->dims());
      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[4];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      out_dims_vec[4] = output->dims()[3];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));

      transformed_output.mutable_data(ctx.GetPlace(), output->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v2;
      trans5_v2(dev_ctx, *output, &transformed_output, axis);

      // output grad
      transformed_output_grad.Resize(framework::make_ddim(out_dims_vec));
      transformed_output_grad.mutable_data(ctx.GetPlace(), output_grad->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v3;
      trans5_v3(dev_ctx, *output_grad, &transformed_output_grad, axis);

      // input grad
      transformed_input_grad.Resize(framework::make_ddim(in_dims_vec));
C
chengduoZH 已提交
274 275

    } else {
276 277 278 279 280
      layout = getLayoutFromStr(data_format);
      transformed_input = *input;
      transformed_output = *output;
      transformed_output_grad = *output_grad;
      transformed_input_grad = *input_grad;
C
chengduoZH 已提交
281
    }
C
chengduoZH 已提交
282

283 284 285 286 287 288 289 290 291
    const T *input_data = transformed_input.data<T>();
    const T *output_data = transformed_output.data<T>();
    const T *output_grad_data = transformed_output_grad.data<T>();

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;

C
chengduoZH 已提交
292
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
293
        layout, framework::vectorize<int>(transformed_input.dims()));
C
chengduoZH 已提交
294
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
295
        layout, framework::vectorize<int>(transformed_output.dims()));
C
chengduoZH 已提交
296 297 298

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
D
dzhwinter 已提交
299 300 301 302 303
      if (FLAGS_cudnn_deterministic) {
        pooling_mode = PoolingMode::kMaximumDeterministic;
      } else {
        pooling_mode = PoolingMode::kMaximum;
      }
C
chengduoZH 已提交
304
    } else {
305 306
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : PoolingMode::kAverageInclusive;
C
chengduoZH 已提交
307 308 309 310 311 312 313
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
K
update  
Kexin Zhao 已提交
314
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduoZH 已提交
315
    if (input_grad) {
316 317
      T *input_grad_data = transformed_input_grad.mutable_data<T>(
          transformed_input_grad.dims(), ctx.GetPlace());
C
chengduoZH 已提交
318
      // Because beta is zero, it is unnecessary to reset input_grad.
319
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnPoolingBackward(
C
chengduoZH 已提交
320
          handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
321 322
          cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
          &beta, cudnn_input_desc, input_grad_data));
323 324 325 326 327 328 329 330

      if (data_format == str_NDHWC) {
        auto &dev_ctx =
            ctx.template device_context<paddle::platform::CUDADeviceContext>();
        std::vector<int> axis{0, 2, 3, 4, 1};
        math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v4;
        trans5_v4(dev_ctx, transformed_input_grad, input_grad, axis);
      }
C
chengduoZH 已提交
331 332 333 334 335 336 337 338
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
339
namespace plat = paddle::platform;
C
chengduoZH 已提交
340

K
Kexin Zhao 已提交
341
REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
342
                   ops::PoolCUDNNOpKernel<float>,
K
Kexin Zhao 已提交
343 344 345
                   ops::PoolCUDNNOpKernel<double>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
346
                   ops::PoolCUDNNGradOpKernel<float>,
C
chengduo 已提交
347 348
                   ops::PoolCUDNNGradOpKernel<double>,
                   ops::PoolCUDNNGradOpKernel<plat::float16>);
349

K
Kexin Zhao 已提交
350
REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
351
                   ops::PoolCUDNNOpKernel<float>,
K
Kexin Zhao 已提交
352 353
                   ops::PoolCUDNNOpKernel<double>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
K
Kexin Zhao 已提交
354
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
355
                   ops::PoolCUDNNGradOpKernel<float>,
356
                   ops::PoolCUDNNGradOpKernel<double>);