pool_cudnn_op.cu.cc 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/cudnn_helper.h"
C
chengduoZH 已提交
18 19 20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using DataLayout = platform::DataLayout;
using PoolingMode = platform::PoolingMode;

template <typename T>
29
class PoolCUDNNOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
30 31 32
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
33
                   "It must use CUDAPlace.");
C
chengduoZH 已提交
34 35 36 37 38 39 40

    const Tensor *input = ctx.Input<Tensor>("X");
    Tensor *output = ctx.Output<Tensor>("Out");

    const T *input_data = input->data<T>();
    T *output_data = output->mutable_data<T>(ctx.GetPlace());

C
chengduoZH 已提交
41
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
C
chengduoZH 已提交
42 43 44
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
45
    if (ctx.Attr<bool>("global_pooling")) {
C
chengduoZH 已提交
46
      for (size_t i = 0; i < ksize.size(); ++i) {
C
fix bug  
chengduoZH 已提交
47
        paddings[i] = 0;
C
chengduoZH 已提交
48 49 50 51 52 53 54 55
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
      }
    }

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;
C
chengduoZH 已提交
56 57 58 59 60 61 62
    DataLayout layout;

    if (strides.size() == 2U) {
      layout = DataLayout::kNCHW;
    } else {
      layout = DataLayout::kNCDHW;
    }
C
chengduoZH 已提交
63

C
chengduoZH 已提交
64 65 66 67
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()));
C
chengduoZH 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = PoolingMode::kAverage;
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
    T alpha = 1.0f, beta = 0.0f;

    PADDLE_ENFORCE(platform::dynload::cudnnPoolingForward(
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        cudnn_output_desc, output_data));
  }
};

template <typename T>
90
class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
91 92 93
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
94
                   "It must use CUDAPlace.");
C
chengduoZH 已提交
95 96 97 98 99 100 101

    const Tensor *input = ctx.Input<Tensor>("X");
    const Tensor *output = ctx.Input<Tensor>("Out");
    const Tensor *output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

C
chengduoZH 已提交
102
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
C
chengduoZH 已提交
103 104 105 106
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

C
chengduoZH 已提交
107
    if (ctx.Attr<bool>("global_pooling")) {
C
fix bug  
chengduoZH 已提交
108 109
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
110
        ksize[i] = static_cast<int>(input->dims()[i + 2]);
C
fix bug  
chengduoZH 已提交
111
      }
C
chengduoZH 已提交
112 113 114 115 116 117 118 119 120 121
    }

    const T *input_data = input->data<T>();
    const T *output_data = output->data<T>();
    const T *output_grad_data = output_grad->data<T>();

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;
C
chengduoZH 已提交
122 123 124 125 126 127 128
    DataLayout layout;

    if (strides.size() == 2U) {
      layout = DataLayout::kNCHW;
    } else {
      layout = DataLayout::kNCDHW;
    }
C
chengduoZH 已提交
129

C
chengduoZH 已提交
130 131 132 133
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()));
C
chengduoZH 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    PoolingMode pooling_mode;
    if (pooling_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = PoolingMode::kAverage;
    }

    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
    T alpha = 1.0f, beta = 0.0f;

    if (input_grad) {
      T *input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
151
      // Because beta is zero, it is unnecessary to reset input_grad.
C
chengduoZH 已提交
152 153 154

      PADDLE_ENFORCE(platform::dynload::cudnnPoolingBackward(
          handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
155 156
          cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
          &beta, cudnn_input_desc, input_grad_data));
C
chengduoZH 已提交
157 158 159 160 161 162 163 164 165
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

166 167 168 169 170 171 172 173 174 175 176 177 178
REGISTER_OP_KERNEL(pool2d, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::PoolCUDNNOpKernel<float>,
                   ops::PoolCUDNNOpKernel<double>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::PoolCUDNNGradOpKernel<float>,
                   ops::PoolCUDNNGradOpKernel<double>);

REGISTER_OP_KERNEL(pool3d, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::PoolCUDNNOpKernel<float>,
                   ops::PoolCUDNNOpKernel<double>);
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::PoolCUDNNGradOpKernel<float>,
                   ops::PoolCUDNNGradOpKernel<double>);