nn.py 59.1 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yangyaming 已提交
22
from tensor import concat
Y
Yu Yang 已提交
23 24

__all__ = [
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    'fc',
    'embedding',
    'dynamic_lstm',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'accuracy',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
52
    'split',
53
    'im2sequence',
Y
Yu Yang 已提交
54 55 56 57 58 59 60 61 62
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
63
       name=None):
Y
Yu Yang 已提交
64
    """
65
    **Fully Connected Layer**
Y
Yu Yang 已提交
66

C
caoying03 已提交
67 68 69 70 71 72 73 74 75
    The fully connected layer can take multiple tensors as its inputs. It
    creates a variable (one for each input tensor) called weights for each input
    tensor, which represents a fully connected weight matrix from each input
    unit to each output unit. The fully connected layer multiplies each input
    tensor with its coresponding weight to produce an output Tensor. If
    multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a biases variable will be
    created and added to the output. Finally, if activation is not None,
    it will be applied to the output as well.
C
caoying03 已提交
76

C
caoying03 已提交
77
    This process can be formulated as follows:
78 79 80

    .. math::

C
caoying03 已提交
81
        Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})
82 83 84

    In the above equation:

C
caoying03 已提交
85 86 87 88
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
C
caoying03 已提交
89 90
    * :math:`Act`: The activation funtion.
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
91 92

    Args:
C
caoying03 已提交
93 94 95 96 97 98 99 100 101 102
       input(Variable|list): The input tensor(s) to the fully connected layer.
       size(int): The number of output units in the fully connected layer.
       num_flatten_dims(int): The fc layer can accept an input tensor with more
                              than two dimensions. If this happens, the
                              multidimensional tensor will first be flattened
                              into a 2-dimensional matrix. The parameter
                              `num_flatten_dims` determines how the input tensor
                              is flattened: the first `num_flatten_dims`
                              dimensions will be flatten to form the first
                              dimension of the final matrix (height of the
E
emailweixu 已提交
103
                              matrix), and the rest `rank(X) - num_flatten_dims`
C
caoying03 已提交
104 105 106 107
                              dimensions are flattened to form the second
                              dimension of the final matrix (width of the matrix).
                              For example, suppose `X` is a 6-dimensional tensor
                              with a shape [2, 3, 4, 5, 6], and
E
emailweixu 已提交
108
                              `num_flatten_dims` = 3. Then, the flattened matrix
C
caoying03 已提交
109
                              will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
E
emailweixu 已提交
110
                              By default, `num_flatten_dims` is set to 1.
C
caoying03 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
       param_attr(ParamAttr|list): The parameter attribute for learnable
                                   parameters/weights of the fully connected
                                   layer.
       param_initializer(ParamAttr|list): The initializer used for the
                                          weight/parameter. If set None,
                                          XavierInitializer() will be used.
       bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
                                  for this layer. If set None, no bias will be
                                  added to the output units.
       bias_initializer(ParamAttr|list): The initializer used for the bias.
                                        If set None, then ConstantInitializer()
                                        will be used.
       act(str): Activation to be applied to the output of the fully connected
                 layer.
       name(str): Name/alias of the fully connected layer.
Y
Yu Yang 已提交
126 127


128
    Returns:
C
caoying03 已提交
129
        Variable: The output tensor variable.
130 131

    Raises:
C
caoying03 已提交
132
        ValueError: If rank of the input tensor is less than 2.
133 134 135 136

    Examples:
        .. code-block:: python

C
caoying03 已提交
137
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
138
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
139
    """
C
caoying03 已提交
140

C
caoying03 已提交
141
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
C
caoying03 已提交
161 162
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


178
def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
Y
Yu Yang 已提交
179
    """
180 181 182 183 184 185 186
    **Embedding Layer**

    This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table.
    The result of this lookup is the embedding of each ID in the *input*.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
187 188

    Args:
189
       input(Variable): Input to the function
Y
yangyaming 已提交
190
       size(tuple|list|None): Shape of the look up table parameter
191 192 193
       is_sparse(bool): Boolean flag that specifying whether the input is sparse
       param_attr(ParamAttr): Parameters for this layer
       dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
194

195 196 197
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
198

199 200
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
201

C
chengduoZH 已提交
202
          dict_size = len(dataset.ids)
203
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
204
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
230
                 dtype='float32'):
Y
Yu Yang 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
273
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
274
    """
275
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
276

277 278
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
279

280
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
281

282
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
283

284
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
285 286

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
287 288 289
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
290 291
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

292 293
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
294 295 296
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
297 298 299 300 301 302 303 304 305

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
        activation (string): The activation type for cell (actNode). Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid'
Y
Yu Yang 已提交
306

307 308 309 310 311 312
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
313

314
             # assuming we have x_t_data and prev_hidden of size=10
315
             x_t = fluid.layers.fc(input=x_t_data, size=30)
316 317
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
338

Y
Yu Yang 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


366
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


392
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


def cos_sim(X, Y, **kwargs):
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs):
    helper = LayerHelper('dropout', **kwargs)
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
        attrs={'dropout_prob': dropout_prob,
               'is_test': is_test,
               'seed': seed})
    return out


Y
Yu Yang 已提交
440 441
def cross_entropy(input, label, **kwargs):
    """
Y
Yibing Liu 已提交
442 443 444 445 446 447
    **Cross Entropy Layer**

    This layer computes the cross entropy between `input` and `label`. It supports
    both standard cross-entropy and soft-label cross-entropy loss computation.

    1) One-hot cross-entropy:
Y
Yibing Liu 已提交
448
	`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
449

Y
Yibing Liu 已提交
450
        .. math::
Y
yangyaming 已提交
451

Y
Yibing Liu 已提交
452 453 454
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
Y
Yibing Liu 已提交
455
	`soft_label = True`, `Label[i, j]` indicates the soft label of class j
Y
Yibing Liu 已提交
456 457 458 459 460 461
	for sample i:

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
462
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
463 464 465 466
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
	 As a special case of 2), when each row of 'label' has only one
Y
Yibing Liu 已提交
467 468
	 non-zero element which is equal to 1, soft-label cross-entropy degenerates
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
469

Y
Yibing Liu 已提交
470
    Args:
Y
yangyaming 已提交
471 472
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
            batch size and D is the number of classes. This input is a probability
Y
Yibing Liu 已提交
473 474
            computed by the previous operator, which is almost always the result
            of a softmax operator.
Y
yangyaming 已提交
475 476 477
        label (Variable|list): the ground truth which is a 2-D tensor. When
              `soft_label` is set to `False`, `label` is a tensor<int64> with shape
              [N x 1]. When `soft_label` is set to `True`, `label` is a
Y
Yibing Liu 已提交
478
              tensor<float/double> with shape [N x D].
Y
Yibing Liu 已提交
479
        soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
Y
Yibing Liu 已提交
480
              the given labels as soft labels, default `False`.
Y
Yibing Liu 已提交
481 482 483 484 485

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
Y
yangyaming 已提交
486
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
Y
Yibing Liu 已提交
487 488
              `soft_label == True`, and the 2nd dimension of `input` and `label` are not \
               equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
Y
Yibing Liu 已提交
489 490 491 492 493 494

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508
    """
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    """
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
    **Square error cost layer**

    This layer accepts input predictions and target label and returns the squared error cost.
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the element-wise squared error difference \
                  of input and label.

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
539 540 541 542 543 544 545 546 547 548 549
    """
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
550 551
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    return square_out


def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out = helper.create_tmp_variable(dtype="float32")
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="accuracy",
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
    return acc_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
               excluded_chunk_types=None,
               **kwargs):
    """
Y
yangyaming 已提交
596
    This function computes and outputs the precision, recall and
597
    F1-score of chunk detection.
Y
Yu Yang 已提交
598 599 600 601 602 603 604
    """
    helper = LayerHelper("chunk_eval", **kwargs)

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
605 606 607
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
608 609 610 611 612 613 614 615

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
616 617 618 619
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
620 621 622
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
623 624
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
625
        })
626
    return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks
Y
Yu Yang 已提交
627 628 629 630 631 632 633 634 635


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
636
                  act=None):
Y
Yu Yang 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def conv2d(input,
           num_filters,
           filter_size,
           stride=None,
           padding=None,
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
678
           act=None):
Y
Yu Yang 已提交
679
    """
C
chengduoZH 已提交
680 681 682 683 684 685 686 687
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels, H is the height
    of the feature, and W is the width of the feature.
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
C
refine  
chengduoZH 已提交
688
    If bias attribution and activation type are provided, bias is added to the output of the convolution,
C
chengduoZH 已提交
689 690 691
    and the corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:

C
refine  
chengduoZH 已提交
692

C
chengduoZH 已提交
693 694
    .. math::

C
refine  
chengduoZH 已提交
695
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
696

C
chengduoZH 已提交
697
    In the above equation:
C
chengduoZH 已提交
698 699 700

        * :math:`X`: Input value, a tensor with NCHW format.
        * :math:`W`: Filter value, a tensor with MCHW format.
C
chengduoZH 已提交
701
        * :math:`\\ast`: Convolution operation.
C
refine  
chengduoZH 已提交
702
        * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
C
chengduoZH 已提交
703
        * :math:`\\sigma`: Activation function.
C
chengduoZH 已提交
704 705 706 707
        * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

C
chengduoZH 已提交
708 709
        Input:
            Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
710

C
chengduoZH 已提交
711
            Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
712

C
chengduoZH 已提交
713 714
        Output:
            Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
715
        Where
C
chengduoZH 已提交
716
    .. math::
C
chengduoZH 已提交
717

C
chengduoZH 已提交
718 719
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
720 721

    Args:
C
chengduoZH 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        groups(int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        act(str): Activation type. Default: None
C
chengduoZH 已提交
742 743 744 745 746

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
747 748 749
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch.

C
chengduoZH 已提交
750 751 752
    Examples:
        .. code-block:: python

C
refine  
chengduoZH 已提交
753
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
C
chengduoZH 已提交
754
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    """

    if stride is None:
        stride = [1, 1]
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
793
        type='conv2d',
Y
Yu Yang 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


def sequence_pool(input, pool_type, **kwargs):
    """
Y
yangyaming 已提交
810 811 812
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
838

L
Luo Tao 已提交
839 840
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
841
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
842 843 844 845 846 847 848 849
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
850

Y
yangyaming 已提交
851
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
852 853 854 855 856
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869
    """
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
870 871 872 873 874
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
875 876 877
    return pool_out


878
def sequence_first_step(input, **kwargs):
L
Luo Tao 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
893

L
Luo Tao 已提交
894 895 896 897 898 899 900 901 902
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
903

Y
yangyaming 已提交
904
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
905 906 907
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
908 909 910 911
    return sequence_pool(input=input, pool_type="first")


def sequence_last_step(input, **kwargs):
L
Luo Tao 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924 925
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
926

L
Luo Tao 已提交
927 928 929 930 931 932 933 934 935
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
936

Y
yangyaming 已提交
937
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
938 939 940
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
941 942 943
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
944 945 946 947 948
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=None,
           pool_padding=None,
949
           global_pooling=False):
Y
Yu Yang 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_padding is None:
        pool_padding = [0, 0]
    if pool_stride is None:
        pool_stride = [1, 1]
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
995
               data_layout='NCHW'):
Y
Yu Yang 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1022
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1023 1024

    mean = helper.create_global_variable(
Q
QI JUN 已提交
1025 1026 1027 1028
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1029 1030 1031
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))

    variance = helper.create_global_variable(
Q
QI JUN 已提交
1032 1033 1034 1035
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1036 1037 1038 1039 1040 1041 1042
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1043 1044
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


1071
def beam_search_decode(ids, scores):
Y
Yu Yang 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
C
chengduoZH 已提交
1094
                     dilation=None,
1095
                     param_attr=None):
Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    """
    The transpose of conv2d layer.

    This layer is also known as deconvolution layer.

    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
C
chengduoZH 已提交
1118 1119 1120
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation.
Y
Yu Yang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
        param_attr: Parameter Attribute.
        main_program(Program): the main program
        startup_program(Program): the startup program

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
C
chengduoZH 已提交
1141
        op_attr['strides'] = [stride, stride]
Y
Yu Yang 已提交
1142 1143 1144
    elif stride is not None:
        op_attr['strides'] = stride

C
chengduoZH 已提交
1145 1146 1147 1148 1149
    if isinstance(dilation, int):
        op_attr['dilations'] = [dilation, dilation]
    elif dilation is not None:
        op_attr['dilations'] = dilation

Y
Yu Yang 已提交
1150 1151 1152 1153 1154 1155 1156 1157
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])
C
chengduoZH 已提交
1158
        dilation = op_attr.get('dilations', [1, 1])
Y
Yu Yang 已提交
1159 1160 1161

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1162 1163 1164 1165 1166

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1167
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1168

Y
Yu Yang 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)

    return out
Y
yangyaming 已提交
1185 1186


1187
def sequence_expand(x, y):
1188 1189
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1190
    explain how sequence_expand works:
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1219
                y.lod = [[0, 2, 3, 6]]
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1241
            out = layers.sequence_expand(x=x, y=y)
1242
    """
Y
yangyaming 已提交
1243
    helper = LayerHelper('sequence_expand', input=x, **locals())
1244 1245 1246
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1247 1248
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1249
    return tmp
1250 1251


Y
yangyaming 已提交
1252 1253 1254 1255
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1256
              param_attr=None,
1257
              bias_attr=None):
Y
yangyaming 已提交
1258 1259 1260 1261
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1262
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1263

1264
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1265

1266
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1267

1268
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1269 1270 1271

            h_t & = o_t tanh(c_t)

1272 1273 1274 1275 1276 1277
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1278 1279 1280

        .. math::

1281
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1282 1283 1284 1285 1286 1287 1288 1289

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1290
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1291 1292

    Args:
Y
yangyaming 已提交
1293 1294 1295 1296 1297 1298
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1299
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1300 1301
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1302 1303
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
Y
yangyaming 已提交
1304 1305

    Returns:
Y
yangyaming 已提交
1306
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1307 1308 1309 1310

    Raises:
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\
                not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \
1311 1312
                and **cell_t_prev** not be the same or the 2nd dimensions of \
                **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1313 1314 1315 1316 1317 1318

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1319
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1320
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1321
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
1338
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
1339 1340 1341 1342
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
1343 1344
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
1345 1346 1347
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
1348
    size = cell_t_prev.shape[1]
1349
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
1350 1351
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
1352
                param_attr=param_attr,
1353
                bias_attr=bias_attr)
Y
yangyaming 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
1366
    return h, c
G
guosheng 已提交
1367 1368 1369 1370


def reduce_sum(input, dim=None, keep_dim=False):
    """
Y
yangyaming 已提交
1371
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1372 1373 1374

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1375 1376 1377 1378
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
1379
            the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1380 1381
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1382 1383 1384 1385
            than the :attr:`input` unless :attr:`keep_dim` is true.

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1386

G
guosheng 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1411 1412 1413 1414


def reduce_mean(input, dim=None, keep_dim=False):
    """
Y
yangyaming 已提交
1415
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
1416 1417 1418

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1419 1420 1421 1422
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
1423
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1424 1425
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1426 1427 1428 1429
            than the :attr:`input` unless :attr:`keep_dim` is true.

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1430

G
guosheng 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
1455 1456 1457 1458


def reduce_max(input, dim=None, keep_dim=False):
    """
Y
yangyaming 已提交
1459
    Computes the maximum of tensor elements over the given dimension.
1460 1461 1462

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1463 1464 1465 1466
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1467
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1468 1469
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1470 1471 1472 1473
            than the :attr:`input` unless :attr:`keep_dim` is true.

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_min(input, dim=None, keep_dim=False):
    """
Y
yangyaming 已提交
1503
    Computes the minimum of tensor elements over the given dimension.
1504 1505 1506

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1507 1508 1509 1510
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1511
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1512 1513
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1514 1515 1516 1517
            than the :attr:`input` unless :attr:`keep_dim` is true.

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1518

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1543 1544 1545 1546 1547 1548 1549 1550


def split(input, num_or_sections, dim=-1):
    """
    Splits the tensor into multiple sub-tensors.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
1551 1552 1553 1554 1555
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
1556
            :attr:`dim` dimension orderly.
1557
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
            dimension to split along is :math:`rank(input) + dim`.

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
1601 1602


1603 1604 1605 1606 1607 1608 1609 1610 1611
def im2sequence(input,
                block_x=1,
                block_y=1,
                stride_x=1,
                stride_y=1,
                padding_x=0,
                padding_y=0,
                name=None,
                layer_attr=None):
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
    """
    This op use block to scan images and convert these images to sequences.
    After expanding, the number of time step are output_height * output_width
    for an image, in which output_height and output_width are calculated
    by below equation:

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.



    Args:
        input (Variable): The input should be a tensor in NCHW format.
        block_x (int): The width of sub block.
        block_y (int): The width of sub block.
        stride_x (int): The stride size in horizontal direction.
        stride_y (int): The stride size in vertical direction.
        padding_x (int): The padding size in horizontal direction.
        padding_y (int): The padding size in vertical direction.
        name (int): The name of this layer. It is optional.

    Returns:
        output: The output is a LoDTensor woth shape
        {input.batch_size * output_y * x,
        block_y * block_x * input.channels}.
        If we regard output as matrix, each row of this matrix is a step of sequence.

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

            block_height = 2
            block_width = 2
            stride_height = 1
            stride_width = 1
            padding_height = 0
            padding_width = 0

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]



        The simple usage is:

        .. code-block:: python

1699
            output = fluid.layers.im2sequence(input=layer, stride_x=1, stride_y=1, block_x=2, block_y=2)
1700 1701

    """
1702
    helper = LayerHelper('im2sequence', **locals())
1703 1704
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
1705
        type='im2sequence',
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'block_height': block_y,
            'block_width': block_x,
            'stride_height': stride_y,
            'stride_width': stride_x,
            'padding_height': padding_y,
            'padding_width': padding_x
        })
    return out