reshard.py 101.6 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from functools import reduce

import paddle
import paddle.fluid.core as core
from paddle.utils import unique_name
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import Program, OpProtoHolder
23
from paddle.distributed.fleet.meta_optimizers.common import OpRole
C
caozhou 已提交
24 25
import paddle.fluid.layers.utils as utils
from ..collective import _get_global_env
26 27 28
from .dist_context import DistributedContext
from .dist_attribute import OperatorDistributedAttribute, TensorDistributedAttribute
from .process_group import new_process_group, ProcessGroup, _g_process_group_map
29 30 31 32
from .cost import build_comm_desc, CommContext
from .cost import AllgatherOpCost, SendOpCost
from .cost import SliceOpCost, SplitOpCost, ConcatOpCost
from .cluster import Cluster
33
from .utils import print_program_with_dist_attr, _is_gradient_clip_op
C
caozhou 已提交
34

35
# NOTE: If op in _g_special_ops or _g_gradient_clip_ops, it will not be resharded.
36
_g_special_ops = ['check_finite_and_unscale', 'update_loss_scaling']
37 38 39
_g_gradient_clip_ops = [
    "sum", "sqrt", "fill_constant", "elementwise_max", "elementwise_div"
]
40 41 42 43 44 45 46 47 48 49 50 51


def get_var_with_recursion(var_name, block, program):
    """Get var in the parent block if not found in the current block"""
    var = None
    if var_name in block.vars:
        var = block.vars[var_name]
    else:
        parent_block = program.blocks[block.parent_idx]
        if var_name in parent_block.vars:
            var = parent_block.vars[var_name]
    assert var is not None
52

53
    return var
54

C
caozhou 已提交
55 56 57 58 59 60 61

class AllGatherOpDesc:
    """
    Describe the allgather op in the reshard phase.

    Args:
        group (list): Process group.
62 63
        shape (list): The tensor shape.
        is_bool (bool): Whether allgather bool data. Default: False.
C
caozhou 已提交
64 65
    """

66
    def __init__(self, group, shape, is_bool=False):
C
caozhou 已提交
67 68
        self._group = group
        self._desc = "all_gather"
69 70 71 72 73 74
        self._shape = shape
        self._is_bool = is_bool

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
75 76 77 78 79 80 81 82 83

    @property
    def group(self):
        return self._group

    @property
    def desc(self):
        return self._desc

84 85 86 87
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
88
    def __repr__(self):
89
        return f"op: {self._desc}, group: {self._group}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
90 91 92 93 94 95 96 97


class SendOpDesc:
    """
    Describe the send op in the reshard phase.

    Args:
        partition_index (list): The index of partition in complete tensor.
98
        src (int): The source process to send.
C
caozhou 已提交
99
        dst (int): The destination process to receive.
100
        is_bool (bool): Whether send bool data. Default: False.
C
caozhou 已提交
101 102
    """

103
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
104 105 106
        self._dst = dst
        self._partition_index = partition_index
        self._desc = "send"
107 108 109 110 111 112 113 114 115 116 117
        self._shape = []
        self._is_bool = is_bool
        self._src = src

    @property
    def src(self):
        return self._src

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def dst(self):
        return self._dst

    @property
    def desc(self):
        return self._desc

131 132 133 134 135 136 137
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
138
    def __repr__(self):
139
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
140 141 142 143 144 145 146 147 148


class RecvOpDesc:
    """
    Describe the recv op in the reshard op.

    Args:
        partition_index (list): The index of partition in complete tensor.
        src (int): The source process to send.
149 150
        dst (int): The destination process to receive.
        is_bool (bool): Whether receive bool data. Default: False.
C
caozhou 已提交
151 152
    """

153
    def __init__(self, partition_index, src, dst, is_bool=False):
C
caozhou 已提交
154 155 156
        self._src = src
        self._partition_index = partition_index
        self._desc = "recv"
157 158 159 160 161 162 163 164 165 166 167
        self._shape = []
        self._is_bool = is_bool
        self._dst = dst

    @property
    def dst(self):
        return self._dst

    @property
    def is_bool(self):
        return self._is_bool
C
caozhou 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180

    @property
    def partition_index(self):
        return self._partition_index

    @property
    def src(self):
        return self._src

    @property
    def desc(self):
        return self._desc

181 182 183 184 185 186 187
    @property
    def shape(self):
        if not self._shape:
            for item in self.partition_index:
                self._shape.append(item[1] - item[0])
        return self._shape

C
caozhou 已提交
188
    def __repr__(self):
189
        return f"op: {self._desc}, partition_index: {self._partition_index}, dst: {self._dst}, shape: {self._shape}, is_bool: {self._is_bool}."
C
caozhou 已提交
190 191 192 193 194 195 196


class SliceOpDesc:
    """
    Describe the slice op in the reshard phase.

    Args:
197 198 199 200
        starts (list): It represents start indices of corresponding axis in ``axes``.
        ends (list):  It represents end indices of corresponding axis in ``axes``.
        axes (list):  Axes that `starts` and `ends` apply to.
        shape (list): The shape of the tensor to be sliced.
C
caozhou 已提交
201 202
    """

203
    def __init__(self, starts, ends, axes, shape=None):
C
caozhou 已提交
204 205 206 207
        self._starts = starts
        self._ends = ends
        self._axes = axes
        self._desc = "slice"
208
        self._shape = shape
C
caozhou 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    @property
    def starts(self):
        return self._starts

    @property
    def ends(self):
        return self._ends

    @property
    def axes(self):
        return self._axes

    @property
    def desc(self):
        return self._desc

226 227 228 229
    @property
    def shape(self):
        return self._shape

C
caozhou 已提交
230
    def __repr__(self):
231 232 233 234
        if self._shape is not None:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}, shape: {self._shape}."
        else:
            return f"op: {self._desc}, starts: {self._starts}, ends: {self._ends}, axes: {self._axes}."
C
caozhou 已提交
235 236 237 238 239 240 241


class ConcatOpDesc:
    """
    Describe the concat op in the reshard phase.

    Args:
242
        partition_index_list (list): The list contains all partition index.
C
caozhou 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    """

    def __init__(self, partition_index_list):
        self._partition_index_list = partition_index_list
        self._desc = "concat"

    @property
    def partition_index_list(self):
        return self._partition_index_list

    @property
    def desc(self):
        return self._desc

    def __repr__(self):
        return f"op: {self._desc}, partition_index_list: {self._partition_index_list}."


261 262
class Inserter:
    """Insert op required in the reshard process."""
C
caozhou 已提交
263

264
    @staticmethod
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    def insert_cast_op(block, idx, tensor, op_role, tensor_type):
        # to avoid name conflict with framework
        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
            ".".join(["cast@RESHARD", 'tmp']))
        out = block.create_var(name=new_var_name,
                               dtype=tensor_type,
                               type=tensor.type,
                               lod_level=tensor.lod_level)
        block._insert_op(idx,
                         type='cast',
                         inputs={'X': [tensor]},
                         outputs={'Out': [out]},
                         attrs={
                             'in_dtype': tensor.dtype,
                             'out_dtype': out.dtype,
                             'op_role': op_role
                         })
        return out

    @staticmethod
    def insert_send_op(block, idx, tensor, src, dst, op_role):
286 287
        """Insert send op into block at the given index."""
        op_type = 'send_v2'
288 289
        # use pair comm group
        process_group = new_process_group([src, dst])
290 291 292 293
        block._insert_op(idx,
                         type=op_type,
                         inputs={'X': [tensor]},
                         attrs={
294 295
                             'ring_id': process_group.id,
                             'peer': process_group.ranks.index(dst),
296
                             'use_calc_stream': True,
297 298
                             'op_role': op_role,
                             'dynamic_shape': True
299
                         })
300 301

    @staticmethod
302
    def insert_recv_op(block, idx, tensor, src, dst, op_role):
303 304
        """Insert recv op into block at the given index."""
        op_type = 'recv_v2'
305 306
        # use pair group
        process_group = new_process_group([src, dst])
307 308 309 310 311
        block._insert_op(idx,
                         type=op_type,
                         inputs={'X': [tensor]},
                         outputs={'Out': [tensor]},
                         attrs={
312 313
                             'ring_id': process_group.id,
                             'peer': process_group.ranks.index(src),
314 315 316
                             'out_shape': tensor.shape,
                             'dtype': tensor.dtype,
                             'use_calc_stream': True,
317 318
                             'op_role': op_role,
                             'dynamic_shape': True
319
                         })
320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    @staticmethod
    def insert_reset_lod_op(block, idx, X, Y, op_role):
        """Insert reset_lod op into block at the given index."""

        new_var_name = paddle.fluid.unique_name.generate_with_ignorable_key(
            ".".join(["reset_lod@RESHARD", 'tmp']))
        reset_lod_out = block.create_var(name=new_var_name,
                                         shape=X.shape,
                                         type=X.type,
                                         dtype=X.dtype,
                                         lod_level=X.lod_level)

        block._insert_op(idx,
                         type="lod_reset",
                         inputs={
                             'X': X,
                             'Y': Y
                         },
                         outputs={'Out': reset_lod_out},
                         attrs={'op_role': op_role})
        return reset_lod_out

343 344 345 346 347 348 349
    @staticmethod
    def insert_concat_op(block, idx, tensors, axis, op_role):
        """Insert concat op into block at the given block."""
        inputs = {'X': tensors}
        attrs = {}
        attrs['axis'] = axis
        attrs['op_role'] = op_role
350 351
        # to avoid name conflict with framework
        helper = LayerHelper('concat@RESHARD', **locals())
352
        with paddle.static.program_guard(block.program):
353 354 355 356 357 358 359 360 361
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
                    ".".join([helper.name, 'tmp'])),
                dtype=tensors[0].dtype,
                shape=None,
                lod_level=tensors[0].lod_level,
                type=tensors[0].type,
                persistable=False,
                stop_gradient=False)
362 363 364 365 366
        block._insert_op(idx,
                         type='concat',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
367
        return out
C
caozhou 已提交
368

369 370 371 372
    @staticmethod
    def insert_slice_op(block, idx, tensor, starts, ends, axes, new_var_name,
                        op_role):
        """Insert slice op into block at the given block."""
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        # This is a hack to insert split op to get slice tensor
        # 1. [128, 128] => [64, 128]: split
        # 2. [128, 128] => [128, 128]: assign
        # 3. [128, 128] => [64, 64]: slice, it will replaced by multi split
        global_shape = tensor.shape
        slice_shape = [ends[i] - starts[i] for i in range(len(starts))]
        diff_dims = []
        for index, item in enumerate(slice_shape):
            if item != global_shape[index]:
                diff_dims.append(index)

        # use assign
        if len(diff_dims) == 0:
            out = block.create_var(name=new_var_name,
                                   dtype=tensor.dtype,
                                   type=tensor.type,
                                   shape=slice_shape,
                                   lod_level=tensor.lod_level)
            inputs = {'X': [tensor]}
            outputs = {"Out": [out]}
            attrs = {"in_place": False}
            block._insert_op(idx,
                             type="assign",
                             inputs=inputs,
                             outputs=outputs,
                             attrs=attrs)
            return out

        # use split once
        elif len(diff_dims) == 1:
            diff_dim = diff_dims[0]
            num_or_sections = global_shape[diff_dim] // slice_shape[diff_dim]
            axis = diff_dim
            cur_idx = starts[diff_dim] // slice_shape[diff_dim]
            input_shape = global_shape
            inputs = {'X': tensor}
            attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
            new_shape = []
            for index, item in enumerate(tensor.shape):
                if index != axis:
                    new_shape.append(item)
                else:
                    new_shape.append(item // num_or_sections)
            with paddle.static.program_guard(block.program):
                outs = [
                    block.create_var(name=paddle.fluid.unique_name.
                                     generate_with_ignorable_key(".".join(
                                         ['split@RESHARD', 'tmp'])),
                                     dtype=tensor.dtype,
                                     shape=None,
                                     type=tensor.type,
                                     persistable=False,
                                     lod_level=tensor.lod_level,
                                     stop_gradient=False)
                    for i in range(num_or_sections)
                ]
                out = outs[cur_idx]
            op = block._insert_op(idx,
                                  type="split",
                                  inputs=inputs,
                                  outputs={'Out': outs},
                                  attrs=attrs)
            return out

        # use slice
        else:
            inputs = {'Input': tensor}
            infer_flags = list(1 for i in range(len(axes)))
            attrs = {
                "axes": axes,
                "starts": starts,
                "ends": ends,
                "infer_flags": infer_flags,
                'op_role': op_role
            }
            out = block.create_var(name=new_var_name,
                                   dtype=tensor.dtype,
                                   type=tensor.type,
                                   lod_level=tensor.lod_level)
            block._insert_op(idx,
                             type="slice",
                             inputs=inputs,
                             outputs={'Out': [out]},
                             attrs=attrs)

            return out
C
caozhou 已提交
459

460
    @staticmethod
461
    def insert_split_op(block, idx, tensor, num_or_sections, op_role, axis=0):
462
        """Insert split op into block at the given index."""
463
        helper = LayerHelper('split@RESHARD', **locals())
464 465
        input_shape = tensor.shape
        inputs = {'X': tensor}
466 467 468 469 470 471 472
        attrs = {'num': num_or_sections, 'axis': axis, 'op_role': op_role}
        new_shape = []
        for index, item in enumerate(tensor.shape):
            if index != axis:
                new_shape.append(item)
            else:
                new_shape.append(item // num_or_sections)
473 474
        with paddle.static.program_guard(block.program):
            outs = [
475 476 477 478 479 480 481 482 483
                block.create_var(
                    name=paddle.fluid.unique_name.generate_with_ignorable_key(
                        ".".join([helper.name, 'tmp'])),
                    dtype=tensor.dtype,
                    shape=None,
                    lod_level=tensor.lod_level,
                    type=tensor.type,
                    persistable=False,
                    stop_gradient=False) for i in range(num_or_sections)
484
            ]
485 486 487 488 489
        block._insert_op(idx,
                         type="split",
                         inputs=inputs,
                         outputs={'Out': outs},
                         attrs=attrs)
490
        return outs
C
caozhou 已提交
491

492 493
    @staticmethod
    def insert_fill_constant_op(block, idx, op_role):
C
caozhou 已提交
494
        """Insert fill constant op into block at the given index."""
495 496 497
        # to avoid name conflict with framework
        helper = LayerHelper('fill_constant@RESHARD', **locals())
        # use paddle.int64 as dtype
C
caozhou 已提交
498
        with paddle.static.program_guard(block.program):
499 500 501 502 503 504 505 506
            out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
                    ".".join([helper.name, 'tmp'])),
                dtype=paddle.int64,
                shape=None,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
C
caozhou 已提交
507 508 509 510 511
        inputs = {}
        attrs = {'force_cpu': False}
        attrs['str_value'] = str(int("1"))
        attrs['value'] = int("1")
        attrs['dtype'] = out.dtype
512
        attrs['op_role'] = op_role
513 514 515 516 517 518 519 520 521
        utils.get_shape_tensor_inputs(inputs=inputs,
                                      attrs=attrs,
                                      shape=[0],
                                      op_type='fill_constant')
        block._insert_op(idx,
                         type='fill_constant',
                         inputs=inputs,
                         outputs={'Out': [out]},
                         attrs=attrs)
C
caozhou 已提交
522 523 524
        out.stop_gradient = True
        return out

525 526 527 528 529 530 531 532 533 534
    @staticmethod
    def insert_allgather_op(block, idx, tensor, ranks, op_role):
        """Insert allgather op into block at the given index."""
        tensor_list = []
        group = new_process_group(ranks)
        idx_offset = 0

        # instant process group before insert allgather op.
        if not group.is_instantiate():
            # insert fill_constant op
535 536
            fill_constant_out = Inserter.insert_fill_constant_op(
                block, idx, op_role)
537 538 539
            fill_constant_out.stop_gradient = True

            # insert c_allreduce_sum op
540 541 542 543 544 545 546 547 548
            block._insert_op(idx + 1,
                             type="c_allreduce_sum",
                             inputs={'X': [fill_constant_out]},
                             outputs={'Out': [fill_constant_out]},
                             attrs={
                                 'ring_id': 0,
                                 'use_calc_stream': True,
                                 'op_role': op_role
                             })
549 550

            # insert c_sync_calc_stream op
551 552 553 554 555
            block._insert_op(idx + 2,
                             type="c_sync_calc_stream",
                             inputs={'X': [fill_constant_out]},
                             outputs={'Out': [fill_constant_out]},
                             attrs={'op_role': op_role})
556 557 558 559
            idx_offset = 3

        # insert c_allgather op
        op_type = 'c_allgather'
560 561
        # to avoid name conflict with framework
        helper = LayerHelper(op_type + "@RESHARD", **locals())
562
        with paddle.static.program_guard(block.program):
563 564 565 566 567 568 569 570 571
            allgather_out = block.create_var(
                name=paddle.fluid.unique_name.generate_with_ignorable_key(
                    ".".join([helper.name, 'tmp'])),
                dtype=tensor.dtype,
                shape=None,
                lod_level=tensor.lod_level,
                type=tensor.type,
                persistable=False,
                stop_gradient=False)
572 573 574 575 576 577 578 579 580 581
        block._insert_op(idx + idx_offset,
                         type=op_type,
                         inputs={'X': [tensor]},
                         outputs={'Out': [allgather_out]},
                         attrs={
                             'ring_id': group.id,
                             'use_calc_stream': True,
                             'nranks': group.nranks,
                             'op_role': op_role
                         })
582 583 584
        idx_offset += 1

        # insert split op
585 586 587
        split_out = Inserter.insert_split_op(block, idx + idx_offset,
                                             allgather_out, group.nranks,
                                             op_role)
588 589 590 591 592 593 594 595 596
        idx_offset += 1
        tensor_list.extend(split_out)
        return tensor_list, idx_offset

    @staticmethod
    def concat_partitions_with_op(partition_tensor_list, tensor,
                                  partition_index, block, idx, op_role):
        """Concat the tensors and insert concat op."""
        if not partition_tensor_list:
C
caozhou 已提交
597
            partition_tensor_list.append((tensor, partition_index))
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
                concat_axis, first_order, new_partition = Resharder.compute_concat_info(
                    partition_tensor_list[i][1], partition_index)
                if concat_axis != -1:
                    has_concat = True
                    _ = Inserter.insert_concat_op(block, idx[0], [partition_tensor_list[i][0], tensor], concat_axis, op_role) \
                        if first_order == 0 else \
                        Inserter.insert_concat_op(block, idx[0], [tensor, partition_tensor_list[i][0]], concat_axis, op_role)
                    partition_tensor_list.pop(i)
                    idx[0] += 1
                    Inserter.concat_partitions_with_op(partition_tensor_list, _,
                                                       new_partition, block,
                                                       idx, op_role)
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append((tensor, partition_index))


class Remover:
    """Remove var and op in the reshard process."""

    @staticmethod
    def remove_no_need_ops(auto_parallel_main_prog, dist_context, rank_id):
        """Remove no need ops in the main program"""
        not_remove_op_ref = [
            "create_py_reader", "create_double_buffer_reader", "read"
        ]
C
caozhou 已提交
629

630 631 632 633
        # NOTE: The nested sub block is not be supported now.
        remove_block_order = []
        for block_idx in Resharder.while_block_info:
            remove_block_order.append(block_idx)
C
caozhou 已提交
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            if block_idx not in remove_block_order:
                remove_block_order.append(block_idx)

        # the sub block should be removed first
        for block_idx in remove_block_order:
            remove_op_idx = []
            block = auto_parallel_main_prog.blocks[block_idx]
            ops = block.ops
            vars = block.vars
            for idx, op in enumerate(ops):
                if op.type == "read":
                    dim_list = []
                    for var_name in op.output_arg_names:
                        dim_list.extend(
                            get_var_with_recursion(
                                var_name, block, auto_parallel_main_prog).shape)
                    for i in range(idx, -1, -1):
                        if ops[i].type == "create_py_reader":
                            ops[i]._set_attr("shape_concat", dim_list)
                            break
                    continue
657

658 659 660 661 662 663 664 665 666 667 668 669 670
                # replace the input and output of c_sync_comm_stream op when in pipeline scene.
                if op.type == "c_sync_comm_stream":
                    need_save = []
                    for var_name in op.input_arg_names:
                        process_mesh = dist_context.get_tensor_dist_attr_for_program(
                            get_var_with_recursion(
                                var_name, block,
                                auto_parallel_main_prog)).process_mesh
                        if rank_id in process_mesh.processes:
                            need_save.append(var_name)
                    if not need_save:
                        remove_op_idx.append(idx)
                        continue
671

672 673 674 675
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, need_save)
                    op.desc.set_output(proto.outputs[0].name, need_save)
                    continue
676

677 678 679 680 681 682 683 684 685 686 687
                # judge the other op whether should be removed.
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                if op_dist_attr is not None:
                    op_process_mesh = op_dist_attr.process_mesh
                    if rank_id not in op_process_mesh.processes and op.type not in not_remove_op_ref:
                        remove_op_idx.append(idx)

            for idx in remove_op_idx[::-1]:
                block._remove_op(idx)

    @staticmethod
688 689
    def remove_no_need_vars(auto_parallel_main_prog, dist_params_grads,
                            feed_var_names):
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        """Remove no need vars in the main program"""
        for block_idx, block in enumerate(auto_parallel_main_prog.blocks):
            remove_vars = set()
            ops = block.ops
            vars = block.vars
            need_vars = set()
            for op in ops:
                for var_name in op.input_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
                for var_name in op.output_arg_names:
                    if var_name in vars:
                        need_vars.add(var_name)
            for var in vars:
                if var not in need_vars:
                    remove_vars.add(var)

            # change dist_params_grads, the optimize op just in block 0.
            if block_idx == 0:
                param_grad_map = {}
                for op in ops:
                    if int(op.attr('op_role')) == int(OpRole.Optimize):
                        if "Param" in op.input_names and "Grad" in op.input_names:
                            param_name = op.input("Param")[0]
                            grad_name = op.input("Grad")[0]
                            param_grad_map[param_name] = grad_name

                need_remove_idx = []
                for idx, item in enumerate(dist_params_grads):
                    if item[0].name not in param_grad_map.keys():
                        need_remove_idx.append(idx)

                for idx in need_remove_idx[::-1]:
                    dist_params_grads.pop(idx)

                idx = 0
                while idx < len(dist_params_grads):
                    param_name = dist_params_grads[idx][0].name
                    grad_name = dist_params_grads[idx][1].name
                    if grad_name != param_grad_map[param_name]:
                        dist_params_grads[idx] = (
                            vars[param_name], vars[param_grad_map[param_name]])
                    idx += 1

            for var in remove_vars:
735
                if var in feed_var_names:
736
                    continue
737 738 739 740 741 742 743 744 745 746
                block._remove_var(var)

    @staticmethod
    def remove_no_need_in_main(auto_parallel_main_prog, dist_context, rank_id,
                               dist_params_grads):
        """Remove no need vars and ops in the main program."""
        Remover.remove_no_need_ops(auto_parallel_main_prog, dist_context,
                                   rank_id)
        Resharder.change_while_op_input_and_output(auto_parallel_main_prog,
                                                   dist_context)
747 748 749 750 751 752
        # 'feed_var_names' cannot be removed from auto_parallel_main_prog
        feed_var_names = []
        for var in sum(list(dist_context.serial_feed_vars.values()), []):
            feed_var_names.append(var.name)
        Remover.remove_no_need_vars(auto_parallel_main_prog, dist_params_grads,
                                    feed_var_names)
753 754 755 756 757 758 759 760 761 762

    @staticmethod
    def remove_no_need_in_startup(auto_parallel_main_prog,
                                  auto_parallel_startup_prog):
        """Remove no need vars and ops in the startup program."""
        main_input_vars = set()
        main_ops = auto_parallel_main_prog.global_block().ops
        for op in main_ops:
            for var_name in op.input_arg_names:
                main_input_vars.add(var_name)
763

764 765 766 767 768 769 770 771 772
        startup_block = auto_parallel_startup_prog.global_block()
        startup_output_vars = set()
        startup_ops = startup_block.ops
        for op in startup_ops:
            # skip c_sync_comm_stream op
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                startup_output_vars.add(var_name)
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        need_vars = set()
        for var_name in startup_output_vars:
            if var_name in main_input_vars:
                need_vars.add(var_name)

        startup_ops = startup_block.ops
        actual_need_vars = set()
        for idx, op in enumerate(startup_ops):
            is_need_op = False
            if op.type == "c_sync_comm_stream":
                continue
            for var_name in op.output_arg_names:
                if var_name in need_vars:
                    is_need_op = True
                    break
            if is_need_op:
                for var_name in op.output_arg_names:
                    actual_need_vars.add(var_name)
                for var_name in op.input_arg_names:
                    actual_need_vars.add(var_name)
794

795 796 797 798 799 800
        remove_vars = set()
        for var_name in startup_block.vars:
            if var_name not in actual_need_vars:
                remove_vars.add(var_name)
        for var in remove_vars:
            startup_block._remove_var(var)
801 802

        remove_op_idx = []
803 804 805
        vars = startup_block.vars
        for idx, op in enumerate(startup_block.ops):
            is_no_need_op = False
806
            if op.type == "c_sync_comm_stream":
807
                var_names = []
808
                for var_name in op.input_arg_names:
809 810 811
                    if var_name in vars:
                        var_names.append(var_name)
                if not var_names:
812
                    remove_op_idx.append(idx)
813 814 815 816
                else:
                    proto = OpProtoHolder.instance().get_op_proto(op.type)
                    op.desc.set_input(proto.inputs[0].name, var_names)
                    op.desc.set_output(proto.outputs[0].name, var_names)
817
                continue
C
caozhou 已提交
818

819 820 821 822 823 824
            for var_name in op.output_arg_names:
                if var_name not in vars:
                    is_no_need_op = True
                    break
            if is_no_need_op:
                remove_op_idx.append(idx)
825
        for idx in remove_op_idx[::-1]:
826
            startup_block._remove_op(idx)
C
caozhou 已提交
827 828


829 830 831
class Resharder:
    """
    Reshard tensor in the program according to its distributed attribute and corresponding op distributed attribute.
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    Args:
        auto_parallel_main_prog (Program): An auto parallel main program.
        auto_parallel_startup_prog (Program): An auto parallel startup program.
        rank_id (int): The process id.
        dist_context (DistributedContext): The distributed context of this rank.
        dist_params_grads (list): The list contains the tuple of param and grad.
        batch_size (int): The batch size. Default: None.
    """
    while_block_info = {}

    def __init__(self,
                 auto_parallel_main_prog,
                 auto_parallel_startup_prog,
                 rank_id,
                 dist_context,
                 dist_params_grads,
                 batch_size=None):
        assert isinstance(auto_parallel_main_prog, Program), "The type of auto_parallel_main_prog should be Program, " \
                                            "but got {}.".format(type(auto_parallel_main_prog))
852 853 854
        if auto_parallel_startup_prog is not None:
            assert isinstance(auto_parallel_main_prog, Program), "The type of auto_parallel_startup_prog should be Program or None, " \
                                                "but got {}.".format(type(auto_parallel_startup_prog))
855 856 857 858
        assert isinstance(rank_id, int), "The type of rank_id should be int, " \
                                            "but got {}.".format(type(rank_id))
        assert isinstance(dist_context, DistributedContext), "The type of dist_context should be DistributedContext, " \
                                            "but got {}.".format(type(dist_context))
859

860 861 862 863 864 865 866 867 868 869 870 871 872
        if batch_size is not None:
            assert isinstance(batch_size, int), "The type of batch_size should be int, " \
                                                "but got {}.".format(type(batch_size))

        self._auto_parallel_main_prog = auto_parallel_main_prog
        self._auto_parallel_startup_prog = auto_parallel_startup_prog
        self._rank_id = rank_id
        self._dist_context = dist_context
        self._dist_params_grads = dist_params_grads
        self._batch_size = batch_size
        self._has_sent = {}
        self._has_recv = {}
        self._has_allgather = {}
873 874
        # to avoid reshard repeatly
        self._has_resharded = {}
875

876 877 878
    @property
    def auto_parallel_main_prog(self):
        return self._auto_parallel_main_prog
879

880 881 882
    @property
    def auto_parallel_startup_prog(self):
        return self._auto_parallel_startup_prog
883

884 885 886
    @property
    def rank_id(self):
        return self._rank_id
887

888 889 890
    @property
    def dist_context(self):
        return self._dist_context
891

892 893 894
    @property
    def dist_params_grads(self):
        return self._dist_params_grads
895

896 897 898
    @property
    def batch_size(self):
        return self._batch_size
899

900 901 902
    @property
    def has_sent(self):
        return self._has_sent
903

904 905 906
    @property
    def has_recv(self):
        return self._has_recv
907

908 909 910 911 912 913 914 915 916 917 918 919 920
    @property
    def has_allgather(self):
        return self._has_allgather

    @staticmethod
    def compute_partition_shape(complete_shape, dims_mapping, process_shape):
        """Compute the shape of partition."""
        partition_shape = []
        for idx, item in enumerate(complete_shape):
            if dims_mapping[idx] == -1:
                partition_shape.append(item)
            else:
                partition_shape.append(item // process_shape[dims_mapping[idx]])
921

922
        return partition_shape
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
    @staticmethod
    def compute_process_index(process, process_group, process_shape):
        """Compute the index of process_shape corresponding to the process."""
        relative_process = process_group.index(process)
        process_index = []
        product = reduce(lambda x, y: x * y, process_shape)

        for i in range(len(process_shape)):
            idx = relative_process // (product // process_shape[i])
            product = product // process_shape[i]
            relative_process = relative_process - relative_process // product * product
            process_index.append(idx)

        return process_index

    @staticmethod
    def compute_partition_index(process, complete_shape, dims_mapping,
                                process_shape, process_group):
        """Compute the partition index in complete tensor."""
        partition_shape = Resharder.compute_partition_shape(
            complete_shape, dims_mapping, process_shape)
        process_index = Resharder.compute_process_index(process, process_group,
                                                        process_shape)
        partition_index = []

        for i in range(len(complete_shape)):
            if dims_mapping[i] == -1:
                partition_index.append([0, partition_shape[i]])
            else:
                partition_index.append([
                    process_index[dims_mapping[i]] * partition_shape[i],
                    (process_index[dims_mapping[i]] + 1) * partition_shape[i]
                ])

        return partition_index

    @staticmethod
    def compute_concat_info(partition_index_x, partition_index_y):
        """Judge whether two partition can be concatenated and compute concatenated partition index."""
        differ_count = 0
        concat_axis = -1
        first_order = 0
        new_partition = []

        for idx, item in enumerate(partition_index_x):
            if item != partition_index_y[idx]:
                differ_count += 1
971 972
                if item[1] == partition_index_y[idx][
                        0] and item[0] < partition_index_y[idx][1]:
973 974
                    concat_axis = idx
                    new_partition.append([item[0], partition_index_y[idx][1]])
975 976
                elif item[0] == partition_index_y[idx][
                        1] and item[1] > partition_index_y[idx][0]:
977 978 979 980 981
                    first_order = 1
                    concat_axis = idx
                    new_partition.append([partition_index_y[idx][0], item[1]])
            else:
                new_partition.append(item)
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
        if differ_count == 1:
            return concat_axis, first_order, new_partition
        else:
            return -1, first_order, new_partition

    @staticmethod
    def compute_complete_shape(slice_shape, process_shape, dims_mapping):
        """compute the complete shape of the slice tensor  with its process mesh and dims mapping"""
        complete_shape = []
        for idx, item in enumerate(slice_shape):
            if dims_mapping[idx] == -1:
                complete_shape.append(item)
            else:
                complete_shape.append(item * process_shape[dims_mapping[idx]])
        return complete_shape
C
caozhou 已提交
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    @staticmethod
    def concat_partitions(partition_index_list, partition_index):
        """Concat the given partitions without inserting concat op."""
        if not partition_index_list:
            partition_index_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_index_list):
                concat_axis, _, new_partition = Resharder.compute_concat_info(
                    partition_index_list[i], partition_index)
                if concat_axis != -1:
                    has_concat = True
                    partition_index_list.pop(i)
                    Resharder.concat_partitions(partition_index_list,
                                                new_partition)
                    break
                i += 1
            if not has_concat:
                partition_index_list.append(partition_index)

    @staticmethod
    def change_while_op_input_and_output(auto_parallel_main_prog, dist_context):
        """Change while op input and output after the corresponding sub block ops removed"""
        for sub_block_idx in Resharder.while_block_info:
            sub_block = auto_parallel_main_prog.blocks[sub_block_idx]
            parent_while_op_id = Resharder.while_block_info[sub_block_idx][
                "op_id"]
            parent_block = auto_parallel_main_prog.blocks[sub_block.parent_idx]

            sub_block_op_inputs = set()
            sub_block_op_outputs = []
            for op in sub_block.ops:
                # skip the input and output of operators inserted in the reshard phase
                dist_op = dist_context.get_dist_op_for_program(op)
1034 1035 1036 1037
                if dist_op or (op.type == "slice" and not dist_op) or (
                        op.type == "split"
                        and not dist_op) or (op.type == "assign"
                                             and not dist_op):
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                    for var_name in op.output_arg_names:
                        if var_name not in sub_block_op_outputs:
                            sub_block_op_outputs.append(var_name)
                    for var_name in op.input_arg_names:
                        sub_block_op_inputs.add(var_name)

            # find the while op
            while_op = None
            for op in parent_block.ops:
                if op.desc.id() == parent_while_op_id and op.type == "while":
                    while_op = op
                    break

1051 1052
            if while_op is None:
                continue
1053 1054 1055 1056 1057 1058 1059 1060

            # find the actual input and output of while op
            proto = OpProtoHolder.instance().get_op_proto(while_op.type)
            new_X = []
            for var_name in while_op.input("X"):
                if var_name in sub_block_op_inputs:
                    new_X.append(var_name)
            assert new_X
1061
            new_X.sort()
1062 1063 1064 1065 1066 1067
            while_op.desc.set_input(proto.inputs[0].name, new_X)

            new_Out = []
            for var_name in while_op.output("Out"):
                for output_name in sub_block_op_outputs[::-1]:
                    if output_name.find(var_name) != -1:
1068 1069
                        if output_name not in new_Out:
                            new_Out.append(output_name)
1070 1071 1072 1073 1074 1075
            assert new_Out
            while_op.desc.set_output(proto.outputs[0].name, new_Out)

    def is_overlapped(self, shape_x, shape_y):
        """Judge whether two partitions intersect on the specified dimension."""
        overlapped = False
1076 1077
        if (shape_y[0] <= shape_x[0] < shape_y[1]) or (shape_x[0] <= shape_y[0]
                                                       < shape_x[1]):
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            overlapped = True
        return overlapped

    def is_unshard(self, dims_mapping):
        for dim in dims_mapping:
            if dim != -1:
                return False
        return True

    def is_special_op(self, op):
1088
        global _g_special_ops, _g_gradient_clip_ops
Z
zhaoyingli 已提交
1089 1090
        if op.type in _g_special_ops:
            return True
1091 1092
        if _is_gradient_clip_op(op) and op.type in _g_gradient_clip_ops:
            return True
Z
zhaoyingli 已提交
1093 1094
        return False

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
    def is_condition_replicative(self, op):
        assert op.type == "while"
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_dist_attr = dist_op.dist_attr

        # the dims mapping of condition tensor should be replicative
        for var_name in op.input("Condition"):
            var = get_var_with_recursion(var_name, sub_block,
                                         self.auto_parallel_main_prog)
            dist_tensor = self.dist_context.get_dist_tensor_for_program(var)
            tensor_dist_attr = dist_tensor.dist_attr
            var_dims_mapping = tensor_dist_attr.dims_mapping
            for dim in var_dims_mapping:
                if dim != -1:
                    return False
1111

1112 1113
        return True

1114
    def need_reshard(self, dist_tensor, dist_attr, op_input=True, dist_op=None):
1115 1116 1117 1118 1119
        """Judge the tensor whether needs to be resharded."""
        is_reshard = False
        tensor_dist_attr = dist_tensor.dist_attr
        tensor_dims_mapping = tensor_dist_attr.dims_mapping
        tensor_process_mesh = tensor_dist_attr.process_mesh
1120 1121 1122 1123

        # dist_attr is [process_mesh, dims_mapping] and process_mesh is not a union
        op_process_mesh = dist_attr[0]

1124
        if op_input:
1125
            op_input_dims_mapping = dist_attr[1]
1126
            if all(
1127
                    map(lambda x: x, [
1128 1129 1130
                        tensor_dims_mapping, tensor_process_mesh,
                        op_input_dims_mapping, op_process_mesh
                    ])):
1131
                # judge whether need reshard by dims_mapping
1132
                if tensor_dims_mapping != op_input_dims_mapping:
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
                    if tensor_process_mesh not in self.dist_context.process_meshes:
                        # assert whether -1 when union.
                        for item in tensor_dims_mapping:
                            if item != -1:
                                raise ValueError(
                                    "The dim must be -1 when tensor process mesh is a union."
                                )
                        # tensor process_mesh: [0, 1, 2, 3], dims_mapping: [-1, -1]
                        # op process_mesh: [4, 5], dims_mapping: [0, -1]
                        # reshard is not supported such as above
                        if not is_reshard:
                            return is_reshard
1145
                        else:
1146 1147 1148 1149 1150 1151 1152 1153
                            raise ValueError(
                                "it is not supported that tensor process mesh is a union and needs reshard."
                            )
                    is_reshard = True

                # judge whether need reshard by process_mesh
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1154
        else:
1155
            op_output_dims_mapping = dist_attr[1]
1156
            if all(
1157
                    map(lambda x: x, [
1158 1159 1160 1161 1162 1163 1164
                        tensor_dims_mapping, tensor_process_mesh,
                        op_output_dims_mapping, op_process_mesh
                    ])):
                if tensor_dims_mapping != op_output_dims_mapping:
                    raise ValueError(
                        "It is not supported that tensor dims mapping is different from op output dims mapping."
                    )
1165 1166
                if tensor_process_mesh != op_process_mesh:
                    is_reshard = True
1167 1168 1169 1170

        return is_reshard

    def get_op_process_meshes(self, op):
1171
        """Get sub process meshes of the given op if op process mesh is a union."""
1172 1173 1174
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        op_process_mesh = dist_op.dist_attr.process_mesh
1175

1176
        for process_mesh in self.dist_context.process_meshes:
1177 1178
            if set(process_mesh.processes) & (set(
                    op_process_mesh.processes)) and len(
1179
                        process_mesh.processes) < len(
1180
                            op_process_mesh.processes):
1181 1182 1183 1184 1185 1186 1187 1188
                process_meshes.append(process_mesh)

        # it means the process mesh is not a union when process meshes is null
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        return process_meshes

1189
    def find_op_desc_seq(self, dist_tensor, dist_attr, serial=False):
1190 1191 1192 1193 1194
        """
        Find the op description sequence to reshard the source tensor for matching the op requirement.

        Args:
            dist_tensor (DistributedTensor): A distributed tensor.
1195 1196
            dist_attr (list): A list contains process_mesh and dims_mapping such as [process_mesh, dims_mapping].
            serial (bool): If serial is true, the dist tensor and dist op come from serial program. Otherwise, they come from auto program.
1197 1198 1199 1200 1201 1202 1203 1204

        Returns:
            Dict, the dict represents the required op description sequence corresponding to process, The key of dict is
            process and value is a list containing op description.
        """
        tensor_dist_attr = dist_tensor.dist_attr
        source_tensor = dist_tensor.serial_tensor
        tensor_name = source_tensor.name
1205

1206 1207 1208 1209 1210
        source_dims_mapping = tensor_dist_attr.dims_mapping
        source_process_mesh = tensor_dist_attr.process_mesh
        source_process_group = source_process_mesh.processes
        source_process_shape = source_process_mesh.topology

1211 1212
        target_process_mesh = dist_attr[0]
        target_dims_mapping = dist_attr[1]
1213 1214 1215 1216
        target_process_group = target_process_mesh.processes
        target_process_shape = target_process_mesh.topology

        if source_tensor.shape[0] < 0:
1217
            assert source_tensor.shape[0] == -1
1218 1219 1220 1221 1222
            new_shape = list(source_tensor.shape)
            new_shape[0] = self.batch_size
            source_tensor.desc.set_shape(new_shape)

        complete_shape = Resharder.compute_complete_shape(
1223 1224
            source_tensor.shape, source_process_shape,
            source_dims_mapping) if not serial else source_tensor.shape
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        op_desc_seq = {}

        # TODO: if the target process group has the same process with source process group
        if set(target_process_group).intersection(set(
                source_process_group)) and set(target_process_group).difference(
                    set(source_process_group)):
            pass

        elif target_process_group != source_process_group:
            partition_process_mapping_list = []
            for source_process in source_process_group:
1236
                # get partition index of source process
1237 1238 1239
                source_partition_index = Resharder.compute_partition_index(source_process, complete_shape, source_dims_mapping, \
                                                                source_process_shape, source_process_group)
                if not partition_process_mapping_list:
1240
                    # the item in partition_process_mapping_list is source_partition_index, which processes and whether has been used
1241 1242
                    partition_process_mapping_list.append(
                        [source_partition_index, [source_process], [False]])
1243
                else:
1244 1245 1246 1247 1248 1249
                    partition_list = list(
                        [item[0] for item in partition_process_mapping_list])
                    process_list = list(
                        [item[1] for item in partition_process_mapping_list])
                    has_used = list(
                        [item[2] for item in partition_process_mapping_list])
1250

1251 1252 1253 1254 1255
                    if partition_list.count(source_partition_index) == 1:
                        index = partition_list.index(source_partition_index)
                        process_list[index].append(source_process)
                        has_used[index].append(False)
                    else:
1256 1257
                        partition_process_mapping_list.append(
                            [source_partition_index, [source_process], [False]])
1258 1259

            for target_process in target_process_group:
1260
                # has_sent means the source_partition_index has been sent to target_process
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
                has_sent = []
                target_partition_index = Resharder.compute_partition_index(
                    target_process, complete_shape, target_dims_mapping,
                    target_process_shape, target_process_group)
                partition_index_list = []
                all_partition_index_list = []
                for source_process in source_process_group:
                    source_partition_index = Resharder.compute_partition_index(
                        source_process, complete_shape, source_dims_mapping,
                        source_process_shape, source_process_group)
                    to_send_process = None
                    if all(_ for _ in list(map(self.is_overlapped, source_partition_index, target_partition_index))) \
                            and source_partition_index not in has_sent:
                        idx = list([
                            item[0] for item in partition_process_mapping_list
                        ]).index(source_partition_index)
                        has_used = list([
                            item[2] for item in partition_process_mapping_list
                        ])[idx]
                        process_list = list([
                            item[1] for item in partition_process_mapping_list
                        ])[idx]
                        i = 0
                        while i < len(has_used):
                            if not has_used[i]:
                                to_send_process = process_list[i]
                                has_used[i] = True
                                break
                            i += 1
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
                        if i == len(has_used):
                            has_used = list(map(lambda x: False, has_used))
                            to_send_process = process_list[0]
                            has_used[0] = True
                        assert to_send_process is not None, "Failed to find the send process."

                        if to_send_process not in op_desc_seq.keys():
                            op_desc_seq[to_send_process] = []
                        if target_process not in op_desc_seq.keys():
                            op_desc_seq[target_process] = []
                        all_partition_index_list.append(source_partition_index)

                        # append send and recv op desc
1304 1305
                        is_bool = (
                            dist_tensor.serial_tensor.dtype == paddle.bool)
1306
                        send_op_desc = SendOpDesc(source_partition_index,
1307 1308 1309
                                                  to_send_process,
                                                  target_process,
                                                  is_bool=is_bool)
1310
                        recv_op_desc = RecvOpDesc(source_partition_index,
1311 1312 1313
                                                  to_send_process,
                                                  target_process,
                                                  is_bool=is_bool)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
                        op_desc_seq[to_send_process].append(send_op_desc)
                        op_desc_seq[target_process].append(recv_op_desc)
                        has_sent.append(source_partition_index)
                        Resharder.concat_partitions(partition_index_list,
                                                    source_partition_index)

                # append concat op desc
                op_desc_seq[target_process].append(
                    ConcatOpDesc(all_partition_index_list))

                # append slice op desc
                slice_starts = []
                slice_ends = []
                slices_axes = []
                concatenated_partition_index = partition_index_list[0]
1329 1330
                to_slice_tensor_shape = []

1331
                for idx, item in enumerate(concatenated_partition_index):
1332 1333
                    slice_starts.append(target_partition_index[idx][0] -
                                        item[0])
1334 1335
                    slice_ends.append(target_partition_index[idx][1] - item[0])
                    slices_axes.append(idx)
1336 1337
                    to_slice_tensor_shape.append(item[1] - item[0])

1338
                op_desc_seq[target_process].append(
1339 1340 1341 1342
                    SliceOpDesc(slice_starts,
                                slice_ends,
                                slices_axes,
                                shape=to_slice_tensor_shape))
1343

1344
        # in the same process group, it will use allgahther and slice op.
1345
        else:
1346
            # NOTE: It just supports even partition scene.
1347 1348 1349 1350 1351 1352 1353 1354 1355
            partition_index_list = []
            all_partition_index_list = []
            process_index = []
            for source_process in source_process_group:
                source_partition_index = Resharder.compute_partition_index(
                    source_process, complete_shape, source_dims_mapping,
                    source_process_shape, source_process_group)
                if source_partition_index not in partition_index_list:
                    partition_index_list.append(source_partition_index)
1356 1357 1358
                    process_index.append([[
                        source_process,
                    ], source_partition_index])
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
                else:
                    process_index[partition_index_list.index(
                        source_partition_index)][0].append(source_process)

            for i in range(len(process_index[0][0])):
                group = []
                for j in range(len(process_index)):
                    group.append(process_index[j][0][i])
                    if i == 0:
                        all_partition_index_list.append(process_index[j][1])
                for process in group:
                    # append slice op desc
                    slice_starts = []
                    slice_ends = []
                    slices_axes = []
                    target_partition_index = Resharder.compute_partition_index(
                        process, complete_shape, target_dims_mapping,
                        target_process_shape, target_process_group)
                    for idx, item in enumerate(target_partition_index):
                        slice_starts.append(item[0])
                        slice_ends.append(item[1])
                        slices_axes.append(idx)

1382
                    to_slice_tensor_shape = dist_tensor.global_sizes()
1383 1384
                    slice_op_desc = SliceOpDesc(starts=slice_starts,
                                                ends=slice_ends,
1385 1386 1387 1388 1389
                                                axes=slices_axes,
                                                shape=to_slice_tensor_shape)
                    allgather_shape = None if not serial else dist_tensor.local_sizes(
                        rank=process)
                    op_desc_seq[process] = [AllGatherOpDesc(group=group, shape=allgather_shape, is_bool=(source_tensor.dtype == paddle.bool)),
1390 1391 1392 1393 1394 1395
                                            ConcatOpDesc(partition_index_list=all_partition_index_list), slice_op_desc] \
                        if len(group) > 1 else [slice_op_desc]

        return op_desc_seq

    def parse_op_desc(self, block, op_desc_seq, var_name, reshard_op,
1396
                      dist_attr):
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        """Parse op desc sequence and insert op in the block"""
        tensor_list = []
        partition_tensor_list = []
        if self.rank_id not in op_desc_seq.keys():
            return
        op_desc_list = op_desc_seq[self.rank_id]

        idx = None
        for index, op in list(enumerate(block.ops)):
            if op.desc.id == reshard_op.desc.id:
                idx = index
                break
        assert idx is not None, "The op for reshard cannot be found in the rank {} program.".format(
            self.rank_id)

        matched_op = block.ops[idx]
        source_tensor = get_var_with_recursion(var_name, block,
                                               self.auto_parallel_main_prog)
        for op_desc in op_desc_list:
            if isinstance(op_desc, AllGatherOpDesc):  # noqa: F401
                if var_name not in self.has_allgather.keys():
                    self.has_allgather[var_name] = []
1419 1420
                if not self.has_allgather[var_name] or op_desc.group not in list(
                        map(lambda x: x[0], self.has_allgather[var_name])):
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
                    if op_desc.is_bool:
                        # for bool data allgather, cast to int64 -> allgather -> cast bool
                        out_cast = Inserter.insert_cast_op(
                            block, idx, source_tensor,
                            reshard_op.attr('op_role'), paddle.int64)
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
                            block, idx + 1, out_cast, op_desc.group,
                            reshard_op.attr('op_role'))
                        idx += idx_offset
                        tensor_name_list = []
                        for var in tensor_list:
                            out_cast = Inserter.insert_cast_op(
                                block, idx, var, reshard_op.attr('op_role'),
                                paddle.bool)
                            tensor_name_list.append(out_cast.name)
                            idx += 1
                        self.has_allgather[var_name].append(
                            [op_desc.group, tensor_name_list])
                    else:
                        tensor_list, idx_offset = Inserter.insert_allgather_op(
                            block, idx, source_tensor, op_desc.group,
                            reshard_op.attr('op_role'))
                        idx += idx_offset
                        tensor_name_list = [var.name for var in tensor_list]
                        self.has_allgather[var_name].append(
                            [op_desc.group, tensor_name_list])
1447 1448 1449 1450
                else:
                    for item in self.has_allgather[var_name]:
                        if op_desc.group == item[0]:
                            tensor_list = [
C
caozhou 已提交
1451 1452 1453
                                get_var_with_recursion(
                                    var_name, block,
                                    self.auto_parallel_main_prog)
1454 1455 1456 1457 1458 1459 1460 1461 1462
                                for var_name in item[1]
                            ]
                            break
                assert tensor_list, "The result of parsing allgather op should not be None."

            elif isinstance(op_desc, SendOpDesc):
                if var_name not in self.has_sent.keys():
                    self.has_sent[var_name] = []
                if op_desc.dst not in self.has_sent[var_name]:
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
                    if op_desc.is_bool:
                        out_cast = Inserter.insert_cast_op(
                            block, idx, source_tensor,
                            reshard_op.attr('op_role'), paddle.int64)
                        Inserter.insert_send_op(block, idx + 1, out_cast,
                                                op_desc.src, op_desc.dst,
                                                reshard_op.attr('op_role'))
                        idx += 2
                    else:
                        Inserter.insert_send_op(block, idx, source_tensor,
                                                op_desc.src, op_desc.dst,
                                                reshard_op.attr('op_role'))
                        idx += 1
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
                    self.has_sent[var_name].append(op_desc.dst)

            elif isinstance(op_desc, RecvOpDesc):
                if var_name not in self.has_recv.keys():
                    self.has_recv[var_name] = {}
                if op_desc.src not in self.has_recv[var_name].keys():
                    partition_index = op_desc.partition_index
                    shape = []
                    for index in partition_index:
                        shape.append(index[1] - index[0])
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
                    if op_desc.is_bool:
                        # for bool data, recv int64 -> cast to bool
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=paddle.int64,
                            type=source_tensor.type)
                        Inserter.insert_recv_op(block, idx, recv_tensor,
                                                op_desc.src, op_desc.dst,
                                                reshard_op.attr('op_role'))
                        out_cast = Inserter.insert_cast_op(
                            block, idx + 1, recv_tensor,
                            reshard_op.attr('op_role'), paddle.bool)
                        tensor_list.append(out_cast)
                        idx += 2
                        self.has_recv[var_name][op_desc.src] = out_cast
                    else:
                        recv_tensor = block.create_var(
                            name=unique_name.generate(var_name + "@recv"),
                            shape=shape,
                            lod_level=source_tensor.lod_level,
                            dtype=source_tensor.dtype,
                            type=source_tensor.type)
                        Inserter.insert_recv_op(block, idx, recv_tensor,
                                                op_desc.src, op_desc.dst,
                                                reshard_op.attr('op_role'))

                        # for lod tensor, need reset lod after received
                        if recv_tensor.lod_level != 0:
                            set_lod = False
                            # use data lod to reset tensor lod
                            for tmp_block in self.auto_parallel_main_prog.blocks:
                                for tmp_var_name in tmp_block.vars:
                                    tmp_var = tmp_block.vars[tmp_var_name]
                                    if tmp_var.is_data and tmp_var.lod_level == recv_tensor.lod_level:
                                        reset_lod_out = Inserter.insert_reset_lod_op(
                                            block, idx + 1, recv_tensor,
                                            tmp_var, reshard_op.attr('op_role'))
                                        tensor_list.append(reset_lod_out)
                                        idx += 2
                                        self.has_recv[var_name][
                                            op_desc.src] = reset_lod_out
                                        set_lod = True
                                        break
                                if set_lod:
                                    break
                            assert set_lod is True
                        else:
                            tensor_list.append(recv_tensor)
                            idx += 1
                            self.has_recv[var_name][op_desc.src] = recv_tensor
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
                else:
                    tensor_list.append(self.has_recv[var_name][op_desc.src])

            elif isinstance(op_desc, ConcatOpDesc):
                partition_index_list = op_desc.partition_index_list
                idx_list = [idx]
                for index, tensor in enumerate(tensor_list):
                    Inserter.concat_partitions_with_op(
                        partition_tensor_list, tensor,
                        partition_index_list[index], block, idx_list,
                        reshard_op.attr('op_role'))
                idx = idx_list[0]

            elif isinstance(op_desc, SliceOpDesc):
                assert len(
                    partition_tensor_list) == 1 or not partition_tensor_list
                to_slice_tensor = partition_tensor_list[0][0] if len(
                    partition_tensor_list) == 1 else source_tensor
                new_name = unique_name.generate(var_name + "@RESHARD")
                target_tensor = Inserter.insert_slice_op(
                    block,
                    idx,
                    to_slice_tensor,
                    starts=op_desc.starts,
                    ends=op_desc.ends,
                    axes=op_desc.axes,
                    new_var_name=new_name,
                    op_role=reshard_op.attr('op_role'))

1567 1568 1569
                process_mesh = dist_attr[0]
                dims_mapping = dist_attr[1]

1570 1571 1572 1573 1574 1575
                tensor_attr = TensorDistributedAttribute()
                tensor_attr.dims_mapping = dims_mapping
                tensor_attr.process_mesh = process_mesh
                self.dist_context.set_tensor_dist_attr_for_program(
                    target_tensor, tensor_attr)

1576
                if matched_op.type == "while":
1577
                    # var_reshard_mapping means the while op input need be changed to
1578 1579
                    if "var_reshard_mapping" not in Resharder.while_block_info[
                            op.attr("sub_block").id].keys():
1580 1581
                        Resharder.while_block_info[op.attr(
                            "sub_block").id]["var_reshard_mapping"] = {}
1582 1583 1584 1585
                    if var_name not in Resharder.while_block_info[op.attr(
                            "sub_block").id]["var_reshard_mapping"].keys():
                        Resharder.while_block_info[op.attr("sub_block").id][
                            "var_reshard_mapping"][var_name] = []
1586
                    Resharder.while_block_info[op.attr("sub_block").id][
1587 1588
                        "var_reshard_mapping"][var_name].append(
                            [dist_attr, target_tensor.name])
1589 1590 1591

                # rename op input name according to new name
                for op in block.ops:
1592 1593
                    # just for while op
                    while_op_X_append = []
1594 1595 1596 1597 1598
                    for name in op.input_arg_names:
                        op_dist_attr = self.dist_context.get_op_dist_attr_for_program(
                            op)
                        if name == var_name and op_dist_attr is not None:
                            if op.desc.id() == matched_op.desc.id():
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
                                if matched_op.type == "while":
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
                                    op_input_dist_attr = op_dist_attr.get_input_dist_attr(
                                        old_name)
                                    op_dist_attr.set_input_dist_attr(
                                        new_name, op_input_dist_attr)
                                    op_dist_attr.set_input_dims_mapping(
                                        new_name, dims_mapping)
                                    if old_name in op_dist_attr._inputs_dist_attrs:
                                        op_dist_attr.del_input_dist_attr(
                                            old_name)
                                    while_op_X_append.append(new_name)
                                    continue
                                else:
                                    op.desc._rename_input(
                                        name, target_tensor.name)
                                    old_name = name
                                    new_name = target_tensor.name
                                    assert old_name != new_name
                                    op_input_dist_attr = op_dist_attr.get_input_dist_attr(
                                        old_name)
                                    op_dist_attr.set_input_dist_attr(
                                        new_name, op_input_dist_attr)
                                    op_dist_attr.set_input_dims_mapping(
                                        new_name, dims_mapping)
                                    op_dist_attr.del_input_dist_attr(old_name)
                                    continue
1628 1629 1630 1631

                            op_process_mesh = op_dist_attr.process_mesh
                            op_input_dims_mapping = op_dist_attr.get_input_dims_mapping(
                                var_name)
1632
                            # NOTE: For op whose process mesh is a union, its input will not be renamed by other op reshard result now which means that it will have more reshard operation.
1633 1634
                            if op_process_mesh == process_mesh and op_input_dims_mapping == dims_mapping:
                                op.desc._rename_input(name, target_tensor.name)
1635 1636 1637 1638 1639 1640 1641
                                old_name = name
                                new_name = target_tensor.name
                                assert old_name != new_name
                                op_input_dist_attr = op_dist_attr.get_input_dist_attr(
                                    old_name)
                                op_dist_attr.set_input_dist_attr(
                                    new_name, op_input_dist_attr)
1642
                                op_dist_attr.set_input_dims_mapping(
1643 1644
                                    new_name, dims_mapping)
                                op_dist_attr.del_input_dist_attr(old_name)
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
                    # for while op, the input X should reset
                    if while_op_X_append:
                        proto = OpProtoHolder.instance().get_op_proto(op.type)
                        op.desc.set_input(proto.inputs[0].name,
                                          op.input("X") + while_op_X_append)

    def _get_while_op_input_attrs(self, op, var_name):
        # NOTE: Multi while loop is not supported
        assert op.type == "while"
        sub_block = self.auto_parallel_main_prog.blocks[op.attr("sub_block").id]
        ops = sub_block.ops
        input_attrs = []

        for op in ops:
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if not dist_op:
                continue
            dist_attr = dist_op.dist_attr
            for name in op.input_arg_names:
                if name == var_name:
                    process_mesh = dist_attr.process_mesh
                    input_dims_mapping = dist_attr.get_input_dims_mapping(
                        var_name)
                    has_exist = False
                    for input_attr in input_attrs:
                        if process_mesh == input_attr[
                                0] and input_dims_mapping == input_attr[1]:
                            has_exist = True
                            break
                    if not has_exist:
                        input_attrs.append([process_mesh, input_dims_mapping])
        return input_attrs

    def _get_common_op_input_attrs(self, op, var_name):
        process_meshes = []
        dist_op = self.dist_context.get_dist_op_for_program(op)
        dist_attr = dist_op.dist_attr
        op_process_mesh = dist_attr.process_mesh
        for process_mesh in self.dist_context.process_meshes:
            if set(process_mesh.processes) & (set(
                    op_process_mesh.processes)) and len(
                        process_mesh.processes) < len(
                            op_process_mesh.processes):
                process_meshes.append(process_mesh)

        # it means that the process mesh is not a union when process meshes is none
        if not process_meshes:
            process_meshes.append(op_process_mesh)

        input_dims_mapping = dist_attr.get_input_dims_mapping(var_name)
        input_attrs = []
        for process_mesh in process_meshes:
            input_attrs.append([process_mesh, input_dims_mapping])

        return input_attrs

    def get_op_input_attrs(self, op, var_name):
        op_input_attrs = []
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        if op.type == "while":
            op_input_attrs = self._get_while_op_input_attrs(op, var_name)
        else:
            op_input_attrs = self._get_common_op_input_attrs(op, var_name)

        assert op_input_attrs

        return op_input_attrs

    def _remove_global_process_mesh(self):
        """Remove global process mesh from dist_context.process_meshes"""
        processes = set()
        process_mesh_count = len(self.dist_context.process_meshes)
        if process_mesh_count > 1:
            global_process_mesh_idx = None
            for process_mesh in self.dist_context.process_meshes:
                for process in process_mesh.processes:
                    processes.add(process)
            for idx, process_mesh in enumerate(
                    self.dist_context.process_meshes):
                if len(set(process_mesh.processes)) == len(processes):
                    global_process_mesh_idx = idx
                    break
            if global_process_mesh_idx is not None:
                self.dist_context.process_meshes.pop(idx)

    def _change_subblock_op_input_and_output(self, block_idx, block):
        if "var_reshard_mapping" in Resharder.while_block_info[block_idx]:
            var_reshard_mapping = Resharder.while_block_info[block_idx][
                "var_reshard_mapping"]
            for op in block.ops:
                for var_name in op.input_arg_names:
                    if var_name in var_reshard_mapping:
                        # in while sub block, the union process mesh is not split before reshard sub block
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        dist_attr = dist_op.dist_attr
                        target_name = None
                        for item in var_reshard_mapping[var_name]:
                            if dist_attr.process_mesh == item[0][
                                    0] and dist_attr.get_input_dims_mapping(
                                        var_name) == item[0][1]:
                                target_name = item[1]
                                break
                        if target_name is None:
                            continue
                        else:
                            op.desc._rename_input(var_name, target_name)
                            dist_op = self.dist_context.get_dist_op_for_program(
                                op)
                            op_dist_attr = dist_op.dist_attr
                            old_name = var_name
                            new_name = target_name
                            assert old_name != new_name
                            op_input_dist_attr = op_dist_attr.get_input_dist_attr(
                                old_name)
                            op_dist_attr.set_input_dist_attr(
                                new_name, op_input_dist_attr)
                            op_dist_attr.del_input_dist_attr(old_name)

                # the outputs also need to be renamed when the output name is the same with input name in inplace op
                for var_name in op.output_arg_names:
                    # if the tensor has been resharded multiply, it is not supported now.
                    if var_name in var_reshard_mapping:
                        if len(var_reshard_mapping[var_name]) > 1:
1769
                            raise ValueError(
1770
                                "The scene is not supported that the output is inplaced and the tensor has been resharded multiply when as input."
1771
                            )
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
                        target_name = var_reshard_mapping[var_name][0][1]

                        op.desc._rename_output(var_name, target_name)
                        dist_op = self.dist_context.get_dist_op_for_program(op)
                        op_dist_attr = dist_op.dist_attr
                        old_name = var_name
                        new_name = target_name
                        assert old_name != new_name
                        op_output_dist_attr = op_dist_attr.get_output_dist_attr(
                            old_name)
                        op_dist_attr.set_output_dist_attr(
                            new_name, op_output_dist_attr)
                        op_dist_attr.del_output_dist_attr(old_name)

    def _reshard_input(self, block):
        idx = 0
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]

            if self.is_special_op(op):
                idx += 1
                continue

            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None:
                op_input_dist_attrs = [
                ]  # [(op_process_mesh, op_input_dims_mapping), (op_process_mesh, op_input_dims_mapping)]
                if op.type == "while":
                    if not self.is_condition_replicative(op):
                        raise ValueError(
                            "Please check the condition due to the dims mapping is not replicative."
                        )
                    if op.attr(
                            "sub_block").id not in Resharder.while_block_info:
                        Resharder.while_block_info[op.attr("sub_block").id] = {}
                    Resharder.while_block_info[op.attr(
                        "sub_block").id]["op_id"] = op.desc.id()

                if op.type == "while":
                    # condition var process mesh is the same with op and dims_mapping is replicative, so it do not need reshard
                    input_var_names = op.input("X")
1814
                else:
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
                    input_var_names = op.input_arg_names
                # to avoid while op X order different
                input_var_names.sort()

                idx_offset = 0
                for var_name in input_var_names:
                    # skip lod_tensor_blocking_queue_0
                    if var_name == "lod_tensor_blocking_queue_0":
                        continue
                    var = get_var_with_recursion(var_name, block,
                                                 self.auto_parallel_main_prog)
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
                        var)

                    # judge whether union tensor dims_mapping all -1
                    is_union_process_mesh_tensor = False
                    if dist_tensor.dist_attr.process_mesh not in self.dist_context.process_meshes and self.dist_context.process_meshes:
                        is_union_process_mesh_tensor = True
                        assert dist_tensor.dist_attr.dims_mapping.count(
                            -1) == len(dist_tensor.dist_attr.dims_mapping)

                    op_input_attrs = self.get_op_input_attrs(op, var_name)
                    for input_attr in op_input_attrs:
                        input_process_mesh = None

                        # deal with union tensor
                        if is_union_process_mesh_tensor:
                            # if op process mesh is subset of union tensor process mesh, need no reshard
                            if set(input_attr[0].processes) <= set(
                                    dist_tensor.dist_attr.process_mesh.processes
                            ):
                                continue
1847 1848

                        if dist_tensor is not None and self.need_reshard(
1849 1850 1851 1852 1853
                                dist_tensor, input_attr):
                            reshard_op_desc = self.find_op_desc_seq(
                                dist_tensor, input_attr)
                            self.parse_op_desc(block, reshard_op_desc, var_name,
                                               op, input_attr)
1854 1855 1856
                            cur_op_count = len(block.ops)
                            idx_offset = idx_offset + cur_op_count - pre_op_count
                            pre_op_count = cur_op_count
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
                idx = idx + idx_offset + 1
            else:
                idx += 1

    def _hadnle_recv(self, block, idx, var, op, send_rank, recv_rank):
        if self.rank_id == recv_rank:
            # if recv bool data, recv then cast
            if var.dtype == paddle.bool:
                recv_cast_out = block.create_var(
                    name=unique_name.generate(var.name + "@recv"),
                    shape=var.shape,
                    lod_level=var.lod_level,
                    dtype=paddle.int64,
                    type=var.type)
                Inserter.insert_recv_op(block, idx + 1,
                                        recv_cast_out, send_rank, recv_rank,
                                        op.attr('op_role'))
                reset_lod_out = None
                if var.lod_level != 0:
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
                            if tmp_var.is_data and tmp_var.lod_level == var.lod_level:
                                reset_lod_out = block.create_var(
                                    name=unique_name.generate(var.name +
                                                              "@RESETLOD"),
                                    shape=recv_cast_out.shape,
                                    type=recv_cast_out.type,
                                    dtype=recv_cast_out.dtype,
                                    lod_level=recv_cast_out.lod_level)
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
                                    inputs={
                                        'X': recv_cast_out,
                                        'Y': tmp_var
                                    },
                                    outputs={'Out': reset_lod_out},
                                    attrs={'op_role': op.attr("op_role")})
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True

                # cast int64 to bool
                block._insert_op(idx + 2,
                                 type='cast',
                                 inputs={
                                     'X': [recv_cast_out] if
                                     reset_lod_out is None else [reset_lod_out]
                                 },
                                 outputs={'Out': [var]},
                                 attrs={
                                     'in_dtype': recv_cast_out.dtype,
                                     'out_dtype': var.dtype,
                                     'op_role': op.attr('op_role')
                                 })
            else:
                if var.lod_level != 0:
                    recv_out = block.create_var(
                        name=unique_name.generate(var.name + "@recv"),
                        shape=var.shape,
                        lod_level=var.lod_level,
                        dtype=var.int64,
                        type=var.type)
                    Inserter.insert_recv_op(block, idx + 1, recv_out, send_rank,
                                            recv_rank, op.attr('op_role'))
                    set_lod = False
                    for tmp_block in self.auto_parallel_main_prog.blocks:
                        for tmp_var_name in tmp_block.vars:
                            tmp_var = tmp_block.vars[tmp_var_name]
                            if tmp_var.is_data and tmp_var.lod_level == var.lod_level:
                                idx += 1
                                block._insert_op(
                                    idx,
                                    type="lod_reset",
                                    inputs={
                                        'X': recv_out,
                                        'Y': tmp_var
                                    },
                                    outputs={'Out': var},
                                    attrs={'op_role': op.attr("op_role")})
                                set_lod = True
                                break
                        if set_lod:
                            break
                    assert set_lod is True
1947
                else:
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
                    Inserter.insert_recv_op(block, idx + 1, var, send_rank,
                                            recv_rank, op.attr('op_role'))

    def _handle_send(self, block, idx, var, op, send_rank, recv_rank):
        if var.dtype == paddle.bool:
            cast_out = Inserter.insert_cast_op(block, idx + 1, var,
                                               op.attr('op_role'), paddle.int64)
            Inserter.insert_send_op(block, idx + 2, cast_out, send_rank,
                                    recv_rank, op.attr('op_role'))
        else:
            Inserter.insert_send_op(block, idx + 1, var, send_rank, recv_rank,
                                    op.attr('op_role'))

    def _reshard_output(self, block):
        # insert send and recv op if output process mesh is different from tensor process mesh
        idx = 0
        # skip reader and ops whose process mesh is union
        skip_ops = [
            "create_py_reader", "create_double_buffer_reader", "read", "while",
            "write_to_array", "read_from_array"
        ]
        global _g_special_ops
        skip_ops += _g_special_ops
        while idx < len(block.ops):
            pre_op_count = len(block.ops)
            op = block.ops[idx]
            dist_op = self.dist_context.get_dist_op_for_program(op)
            if dist_op is not None and op.type not in skip_ops:
                idx_offset = 0
                for var_name in op.output_arg_names:
                    var = get_var_with_recursion(var_name, block,
                                                 self.auto_parallel_main_prog)
                    dist_tensor = self.dist_context.get_dist_tensor_for_program(
                        var)
                    tensor_process_mesh = dist_tensor.dist_attr.process_mesh
                    output_attr = [
                        dist_op.dist_attr.process_mesh,
                        dist_op.dist_attr.get_output_dims_mapping(var_name)
                    ]
                    if dist_tensor is not None and self.need_reshard(
                            dist_tensor, output_attr, False):
                        tensor_processes = set(
                            tensor_process_mesh.processes) - (
                                set(tensor_process_mesh.processes)
                                & set(output_attr[0].processes))
                        if tensor_processes:
                            if len(tensor_processes) != len(
                                    output_attr[0].processes):
                                if dist_tensor.dist_attr.dims_mapping.count(
                                        -1) != len(
                                            dist_tensor.dist_attr.dims_mapping
                                        ) or output_attr[1].count(-1) != len(
                                            output_attr[1]):
                                    raise ValueError(
                                        "The dims_mapping must be -1")
                                else:
                                    for index, tensor_process in enumerate(
                                            tensor_processes):
                                        recv_rank = tensor_process
                                        actual_index = index
                                        if index >= len(
                                                output_attr[0].processes):
                                            actual_index = (
                                                index -
                                                len(output_attr[0].processes)
                                            ) % len(output_attr[0].processes)
                                        item = output_attr[0].processes[
                                            actual_index]
                                        if recv_rank == item:
                                            continue
                                        if self.rank_id == item:
                                            # if send bool data, cast then send
                                            self._handle_send(
                                                block, idx, var, op, item,
                                                recv_rank)
                                        if self.rank_id == recv_rank:
                                            # if recv bool data, recv then cast
                                            self._hadnle_recv(
                                                block, idx, var, op, item,
                                                recv_rank)
                            else:
                                for index, tensor_process in enumerate(
                                        tensor_processes):
                                    recv_rank = tensor_process
                                    item = output_attr[0].processes[index]
                                    if recv_rank == item:
                                        continue
                                    if self.rank_id == item:
                                        # if send bool data, cast then send
                                        self._handle_send(
                                            block, idx, var, op, item,
                                            recv_rank)
                                    if self.rank_id == recv_rank:
                                        # if recv bool data, recv then cast
                                        self._hadnle_recv(
                                            block, idx, var, op, item,
                                            recv_rank)

                            cur_op_count = len(block.ops)
                            idx_offset = idx_offset + cur_op_count - pre_op_count
                            pre_op_count = cur_op_count

                idx = idx + idx_offset + 1
            else:
                idx += 1

    def reshard(self):
        self._remove_global_process_mesh()
        for block_idx, block in enumerate(self.auto_parallel_main_prog.blocks):
            # change the var_name before resharding sub block
            if block_idx in Resharder.while_block_info:
                self._change_subblock_op_input_and_output(block_idx, block)

            # reshard input
            self._reshard_input(block)

            # reshard output
            # NOTE: Only support that insert send and recv op if output process mesh is different from tensor process mesh
            self._reshard_output(block)
2067 2068 2069 2070 2071

        # remove no need vars and ops in the main program
        Remover.remove_no_need_in_main(self.auto_parallel_main_prog,
                                       self.dist_context, self.rank_id,
                                       self.dist_params_grads)
2072

2073 2074 2075
        # remove no need vars and ops in the startip program
        Remover.remove_no_need_in_startup(self.auto_parallel_main_prog,
                                          self.auto_parallel_startup_prog)
C
caozhou 已提交
2076

2077 2078
        # reset some variable when remove operation ended
        Resharder.while_block_info = {}
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

    def get_cost(self, op, tensor, cluster):
        # NOTE: The program should be the serial_program which is not been parted
        global _g_special_ops
        not_supported_op_type = _g_special_ops + ["while"]
        reshard_op_cost = None
        if op.type in not_supported_op_type:
            return reshard_op_cost
        else:
            tensor_name = tensor.name
            if tensor_name == "lod_tensor_blocking_queue_0":
                return reshard_op_cost
            else:
                dist_tensor = self.dist_context.get_dist_tensor_for_program(
                    tensor)
                # simplified processing: ignore union process mesh and output reshard
                dist_op = self.dist_context.get_dist_op_for_program(op)
                dims_mapping = dist_op.dist_attr.get_input_dims_mapping(
                    tensor.name)
                process_mesh = dist_op.dist_attr.process_mesh
                dist_attr = [process_mesh, dims_mapping]
                if dist_tensor is not None and self.need_reshard(
                        dist_tensor, dist_attr):
                    if tensor_name not in self._has_resharded:
                        self._has_resharded[tensor_name] = [dist_op]
                    else:
                        for item in self._has_resharded[tensor_name]:
                            item_dist_attr = item.dist_attr
                            item_dims_mapping = item_dist_attr.get_input_dims_mapping(
                                tensor_name)
                            item_process_mesh = item_dist_attr.process_mesh
                            if dims_mapping == item_dims_mapping and item_process_mesh == process_mesh:
                                return reshard_op_cost
                        self._has_resharded[tensor_name].append(dist_op)

                    reshard_op_desc = self.find_op_desc_seq(dist_tensor,
                                                            dist_attr,
                                                            serial=True)
                    dtype = dist_tensor.serial_tensor.dtype
                    reshard_op_cost = self.parse_op_desc_for_cost(
                        reshard_op_desc, dtype, cluster)

        return reshard_op_cost

    def _concat_partitions_for_cost(self, partition_tensor_list,
                                    partition_index, dtype, rank_id,
                                    local_rank_comp_cost, cluster):
        if not partition_tensor_list:
            partition_tensor_list.append(partition_index)
        else:
            i = 0
            has_concat = False
            while i < len(partition_tensor_list):
                concat_axis, first_order, new_partition = Resharder.compute_concat_info(
                    partition_tensor_list[i], partition_index)
                if concat_axis != -1:
                    has_concat = True
                    concat_desc = {}
                    concat_desc["op"] = "concat"
                    concat_desc["attrs"] = {"axis": concat_axis}
                    if first_order == 0:
                        concat_desc["inputs"] = {
                            "X": [(dtype, partition_tensor_list[i]),
                                  (dtype, partition_index)]
                        }
                    else:
                        concat_desc["inputs"] = {
                            "X": [(dtype, partition_index),
                                  (dtype, partition_tensor_list[i])]
                        }
                    partition_tensor_list.pop(i)
                    if rank_id not in local_rank_comp_cost:
                        local_rank_comp_cost[rank_id] = []
                    local_rank_comp_cost[rank_id].append(
                        ConcatOpCost(op_desc=concat_desc, cluster=cluster))
                    self._concat_partitions_for_cost(partition_tensor_list,
                                                     new_partition, dtype,
                                                     rank_id,
                                                     local_rank_comp_cost,
                                                     cluster)
                    break
                i += 1
            if not has_concat:
                partition_tensor_list.append(partition_index)

    def parse_op_desc_for_cost(self, reshard_op_desc, dtype, cluster):

        def _get_idx(comm_ranks, group_ranks):
            res, is_the_same = None, False
            idx = 0
            while idx < len(comm_ranks):
                if comm_ranks[idx] == set(group_ranks):
                    is_the_same = True

                for rank in group_ranks:
                    if rank in comm_ranks[idx]:
                        res = idx
                        comm_ranks[idx].add(rank)
                if res is None:
                    idx += 1
                else:
                    break
            return res, is_the_same

        comm_context = CommContext(cluster)
        # run communication op before computation op
        # TODO: Communication cost is not calculated when the var has been transfered by the same group in the past
        comm_costs = []
        comm_ranks = []
        local_rank_comp_cost = {}
        for key in reshard_op_desc:
            partition_tensor_list = []
            op_desc_list = reshard_op_desc[key]
            for op_desc in op_desc_list:
                if isinstance(op_desc, SendOpDesc):
                    group_ranks = [key, op_desc.dst]
                    shape = op_desc.shape
                    send_desc = build_comm_desc("send_v2", group_ranks, dtype,
                                                shape)
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
                        comm_costs.append([
                            (group_ranks,
                             SendOpCost(op_desc=send_desc,
                                        comm_context=comm_context))
                        ])
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
                                (group_ranks,
                                 SendOpCost(op_desc=send_desc,
                                            comm_context=comm_context)))
                elif isinstance(op_desc, AllGatherOpDesc):
                    # NOTE: fill_const and other unnecessary op is not calculated because those cost is very small
                    group_ranks = op_desc.group
                    shape = op_desc.shape
                    allgather_desc = build_comm_desc("c_allgather", group_ranks,
                                                     dtype, shape)
                    split_inputs_shape = []
                    for idx, dim in enumerate(shape):
                        if idx == 0:
                            split_inputs_shape.append(dim * len(group_ranks))
                        else:
                            split_inputs_shape.append(dim)
                    idx, is_the_same = _get_idx(comm_ranks, group_ranks)
                    if idx is None:
                        comm_costs.append([
                            (group_ranks,
                             AllgatherOpCost(op_desc=allgather_desc,
                                             comm_context=comm_context))
                        ])
                        comm_ranks.append(set(group_ranks))
                    else:
                        if not is_the_same:
                            comm_costs[idx].append(
                                (group_ranks,
                                 AllgatherOpCost(op_desc=allgather_desc,
                                                 comm_context=comm_context)))
                    # calc the split op cost
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
                    split_desc = {}
                    split_desc["op"] = "split"
                    split_desc["inputs"] = {
                        "inputs": [(dtype, split_inputs_shape)]
                    }
                    split_desc["attrs"] = {"num": len(group_ranks), "axis": 0}
                    local_rank_comp_cost[key].append(
                        SplitOpCost(op_desc=split_desc, cluster=cluster))
                elif isinstance(op_desc, ConcatOpDesc):
                    partition_index_list = op_desc._partition_index_list
                    for idx, partion_idex in enumerate(partition_index_list):
                        self._concat_partitions_for_cost(
                            partition_tensor_list, partion_idex, dtype, key,
                            local_rank_comp_cost, cluster)

                elif isinstance(op_desc, SliceOpDesc):
                    if key not in local_rank_comp_cost:
                        local_rank_comp_cost[key] = []
                    assert len(
                        partition_tensor_list) == 1 or not partition_tensor_list
                    to_slice_tensor_shape = []
                    if len(partition_tensor_list) == 1:
                        for item in partition_tensor_list[0]:
                            to_slice_tensor_shape.append(item[1] - item[0])
                    else:
                        to_slice_tensor_shape = op_desc.shape
                    slice_desc = {}
                    slice_desc["op"] = "slice"
                    infer_flags = list(1 for i in range(len(op_desc.axes)))
                    slice_desc["attrs"] = {
                        "axes": op_desc.axes,
                        "starts": op_desc.starts,
                        "ends": op_desc.ends,
                        "infer_flags": infer_flags
                    }
                    slice_desc["inputs"] = {
                        "Input": [(dtype, to_slice_tensor_shape)]
                    }
                    local_rank_comp_cost[key].append(
                        SliceOpCost(op_desc=slice_desc, cluster=cluster))

        res = (comm_costs, local_rank_comp_cost)

        return res