utils.py 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16
import numpy as np
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
from ....framework import IrNode
from ....framework import Operator

_weight_supported_quantizable_op_type = [
    'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul',
    'matmul_v2'
]

_act_supported_quantizable_op_type = [
    "pool2d",
    "elementwise_add",
    "concat",
    "softmax",
    "argmax",
    "transpose",
    "equal",
    "gather",
    "greater_equal",
    "greater_than",
    "less_equal",
    "less_than",
    "mean",
    "not_equal",
    "reshape",
    "dropout",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
    "slice",
    "squeeze",
    "elementwise_sub",
    "mul",
    "matmul",
    "relu",
    "relu6",
    "leaky_relu",
    "tanh",
    "swish",
    "transpose",
    "transpose2",
    "sigmoid",
    "pad2d",
    "flatten",
    "flatten2",
    "batch_norm",
    "layer_norm",
    "matmul_v2",
    "split",
    "flatten_contiguous_range",
    "squeeze2",
    "nearest_interp_v2",
    "bilinear_interp",
    "bilinear_interp_v2",
    "fill_constant_batch_size_like",
    "arg_max",
    "abs",
    "assign",
    "cast",
    "clip",
    "box_coder",
    "crop",
    "cumsum",
    "elementwise_mul",
    "elementwise_pow",
    "expand_v2",
    "fill_any_like",
    "fill_constant",
    "gelu",
    "hard_sigmoid",
    "hard_swish",
    "instance_norm",
    "lookup_table",
    "lookup_table_v2",
    "norm",
    "p_norm",
    "pad3d",
    "pow",
    "prelu",
    "reduce_mean",
    "unsqueeze",
    "unsqueeze2",
    "logical_and",
    "logical_not",
    "meshgrid",
    "roi_align",
    "strided_slice",
    "where",
    "grid_sampler",
    "tile",
    "group_norm",
    "reduce_sum",
    "square",
    "softplus",
    "shuffle_channel",
C
Chang Xu 已提交
111
    "reduce_max",
112 113 114 115 116
]

_out_scale_op_list = list(
    set(_weight_supported_quantizable_op_type +
        _act_supported_quantizable_op_type))
117 118 119 120 121

_channelwise_quant_axis1_ops = [
    'conv2d_transpose', 'mul', 'matmul', 'matmul_v2'
]

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
    "mul": [["X", "Y"], ["Out"]],
    "matmul": [["X", "Y"], ["Out"]],
    "matmul_v2": [["X", "Y"], ["Out"]],
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
    "transpose2": [["X"], ["Out"]],
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
    "prelu": [["X", "Alpha"], ["Out"]],
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
    "layer_norm": [["X"], ["Y"]],
    "sigmoid": [["X"], ["Out"]],
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "elementwise_pow": [["X", "Y"], ["Out"]],
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
    "gru": [["Input", "Weight"], ["Hidden"]],
    "lstm": [["Input", "Weight"], ["Hidden"]],
    "pad2d": [["X"], ["Out"]],
    "pad3d": [["X"], ["Out"]],
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
    "unsqueeze2": [["X"], ["Out"]],
    "unsqueeze2": [["X"], ["Out"]],
    "flatten_contiguous_range": [["X"], ["Out"]],
    "split": [["X"], ["Out"]],
    "squeeze2": [["X"], ["Out"]],
    "nearest_interp_v2": [["X"], ["Out"]],
    "bilinear_interp": [["X"], ["Out"]],
    "bilinear_interp_v2": [["X"], ["Out"]],
    "fill_constant_batch_size_like": [["Input"], ["Out"]],
    "arg_max": [["X"], ["Out"]],
    "abs": [["X"], ["Out"]],
    "assign": [["X"], ["Out"]],
    "cast": [["X"], ["Out"]],
    "clip": [["X"], ["Out"]],
    "box_coder": [["PriorBox"], ["OutputBox"]],
    "crop": [["X"], ["Out"]],
    "cumsum": [["X"], ["Out"]],
    "expand_v2": [["X"], ["Out"]],
    "fill_any_like": [["X"], ["Out"]],
    "fill_constant": [[], ["Out"]],
    "gelu": [["X"], ["Out"]],
    "instance_norm": [["X"], ["Out"]],
    "lookup_table": [["W", "Ids"], ["Out"]],
    "lookup_table_v2": [["W", "Ids"], ["Out"]],
    "norm": [["X"], ["Norm"]],
    "p_norm": [["X"], ["Out"]],
    "pow": [["X"], ["Out"]],
    "reduce_mean": [["X"], ["Out"]],
    "stack": [["X"], ["Y"]],
    "top_k_v2": [["X"], ["Out", "Indices"]],
    "logical_and": [["X", "Y"], ["Out"]],
    "logical_not": [["X"], ["Out"]],
    "meshgrid": [["X"], ["Out"]],
    "roi_align": [["X", "ROIs"], ["Out"]],
    "strided_slice": [["Input"], ["Out"]],
    "where": [["Condition", "X", "Y"], ["Out"]],
    "grid_sampler": [["X", "Grid"], ["Output"]],
    "tile": [["X"], ["Out"]],
    "group_norm": [["X"], ["Y", "Mean", "Variance"]],
    "reduce_sum": [["X"], ["Out"]],
    "square": [["X"], ["Out"]],
    "softplus": [["X"], ["Out"]],
    "shuffle_channel": [["X"], ["Out"]],
C
Chang Xu 已提交
216
    "reduce_max": [["X"], ["Out"]],
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
}


def _get_op_input_var_names(op):
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    if op_name not in _op_real_in_out_name:
        return []

    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    if op_name not in _op_real_in_out_name:
        return []

    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    if op_name not in _op_real_in_out_name:
        return None

    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    if op_name not in _op_real_in_out_name:
        return None

    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

def load_variable_data(scope, var_name):
    '''
    Load variable value from scope
    '''
    var_node = scope.find_var(var_name)
    assert var_node is not None, \
        "Cannot find " + var_name + " in scope."
    return np.array(var_node.get_tensor())


def set_variable_data(scope, place, var_name, np_value):
    '''
    Set the value of var node by name, if the node exits,
    '''
    assert isinstance(np_value, np.ndarray), \
       'The type of value should be numpy array.'
    var_node = scope.find_var(var_name)
    if var_node != None:
        tensor = var_node.get_tensor()
        tensor.set(np_value, place)


325 326 327 328 329 330
def quant_tensor(x, scale, quant_axis=0, weight_bits=8, onnx_format=False):
    # symmetry quant
    def _clip(x, scale):
        x[x > scale] = scale
        x[x < -scale] = -scale
        return x
331 332 333 334 335 336 337 338

    assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
    bnt = (1 << (weight_bits - 1)) - 1
    if isinstance(scale, list):
        for i, s in enumerate(scale):
            if s == 0.0:
                s = 1e-8
            if quant_axis == 0:
339 340 341 342 343 344
                if onnx_format:
                    x[i] = np.round(x[i] / s * bnt)
                    x[i] = np.clip(x[i], -bnt - 1, bnt)
                else:
                    x[i] = _clip(x[i], s)
                    x[i] = x[i] / s * bnt
345
            else:
346 347 348 349 350 351
                if onnx_format:
                    x[:, i] = np.round(x[:, i] / s * bnt)
                    x[:, i] = np.clip(x[:, i], -bnt - 1, bnt)
                else:
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = x[:, i] / s * bnt
352 353
    else:
        scale = 1e-8 if scale == 0.0 else scale
354 355 356 357 358 359
        if onnx_format:
            x = np.round(x / scale * bnt)
            x = np.clip(x, -bnt - 1, bnt)
        else:
            x = _clip(x, scale)
            x = x / scale * bnt
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    return x


def dequant_tensor(x, scale, quant_axis=0, weight_bits=8):
    assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
    bnt = (1 << (weight_bits - 1)) - 1
    if isinstance(scale, list):
        for i, s in enumerate(scale):
            if s == 0.0:
                s = 1e-8
            if quant_axis == 0:
                x[i] = x[i] * s / bnt
            else:
                x[:, i] = x[:, i] * s / bnt
    else:
        scale = 1e-8 if scale == 0.0 else scale
        x = x * scale / bnt
    return x


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
def bias_correction_w(x, x_quant, scale_v, quant_axis, weight_bits=8):
    '''
    Bias correction for weight
    '''
    eps = 1e-8
    bnt = (1 << (weight_bits - 1)) - 1
    x_dequant = x_quant.copy()
    if isinstance(scale_v, list):
        if quant_axis == 0:
            for i, s in enumerate(scale_v):
                x_dequant[i] = x_dequant[i] * s / bnt
            quant_bias = x - x_dequant
            mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
            std_orig = x.reshape(x.shape[0], -1).std(-1)
            std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
            std_bias = std_orig / (std_quant + eps)
        else:
            for i, s in enumerate(scale_v):
                x_dequant[:, i] = x_quant[:, i] * s / bnt
            quant_bias = x - x_dequant
            mean_bias = np.array(
                [quant_bias[:, i].mean() for i in range(quant_bias.shape[1])])
            std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
            std_quant = np.array(
                [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
            std_bias = std_orig / (std_quant + eps)
    else:
        x_dequant = x_quant * scale_v / bnt
        mean_bias = (x - x_dequant).mean()
        std_bias = x.std() / (x_dequant.std() + eps)
    if mean_bias.ndim == 1:
        std_bias = np.resize(std_bias, x.shape)
        mean_bias = np.resize(mean_bias, x.shape)

    x_dequant = (mean_bias + x_dequant) * std_bias
    quantized_param_v = quant_tensor(x_dequant, scale_v, quant_axis,
                                     weight_bits)
    return quantized_param_v


420 421 422 423 424 425 426 427 428
def stable_sigmoid(x):
    sig = np.where(x < 0, np.exp(x) / (1 + np.exp(x)), 1 / (1 + np.exp(-x)))
    return sig


def calculate_quant_cos_error(orig_tensor, qdq_tensor):
    cos_sim = np.inner(orig_tensor.flatten(), qdq_tensor.flatten()) \
              / (np.linalg.norm(orig_tensor.flatten()) * np.linalg.norm(qdq_tensor.flatten()))
    return cos_sim
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452


class tqdm(object):

    def __init__(self, total, bar_format='Loading|{bar}', ncols=80):
        self.total = total
        self.bar_format = bar_format
        self.ncols = ncols
        self.n = 0

    def update(self, n=1):
        self.n += n
        a = "=" * round((self.n / self.total) * self.ncols)
        b = " " * (self.ncols - len(a))
        prefix = self.bar_format.split('|')[0]
        sys.stderr.write("\r{}|{}=>{}| {}/{}".format(prefix, a, b, self.n,
                                                     self.total))
        sys.stderr.flush()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        sys.stderr.write('\n')