optimizer.py 45.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
W
wanghaoshuang 已提交
16
import re
17
from collections import defaultdict
W
Wu Yi 已提交
18
from paddle.fluid.framework import Program, Variable
19 20 21 22 23 24 25 26 27
from . import framework
from . import layers
from .backward import append_backward
from .framework import program_guard
from . import unique_name
from .initializer import Constant
from .layer_helper import LayerHelper
from .regularizer import append_regularization_ops
from .clip import append_gradient_clip_ops, error_clip_callback
28
from contextlib import contextmanager
29

30
__all__ = [
Q
qiaolongfei 已提交
31
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
32
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
33
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
Y
yuyang18 已提交
34
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'RMSPropOptimizer'
35
]
Q
Qiao Longfei 已提交
36 37 38 39 40 41


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
42 43
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
44 45
    """

W
Wu Yi 已提交
46 47 48 49
    def __init__(self,
                 learning_rate,
                 regularization=None,
                 LARS_weight_decay=0.0):
50 51
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
52
            raise TypeError("learning rate should be float or Variable")
D
dzhwinter 已提交
53
        self.regularization = regularization
54
        self._learning_rate = learning_rate
D
dzhwinter 已提交
55 56
        # the learning rate type should be inferenced from loss
        self._dtype = None
57 58
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
59
        self._learning_rate_map = dict()
60 61 62
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
63 64 65 66 67
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
68
        self.helper = None
W
Wu Yi 已提交
69
        self._LARS_weight_decay = LARS_weight_decay
Q
Qiao Longfei 已提交
70

Q
Qiao Longfei 已提交
71
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
72
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
73

74 75 76 77
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
78
                raise TypeError(
79 80
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
81

82 83 84 85 86 87
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
88
            dtype='float32' if self._dtype == None else self._dtype,
89 90
            persistable=True)

Y
yuyang18 已提交
91
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
92 93 94 95
        """
        get global decayed learning rate
        :return:
        """
96 97
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
98
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
99

Q
Qiao Longfei 已提交
100 101 102 103 104
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

105 106 107 108
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
109 110
        if type(param_lr) == Variable:
            # param learning rate has been updated (LARS)
111
            print("returns updated param lr ", param_lr)
W
Wu Yi 已提交
112
            return param_lr
Q
qiaolongfei 已提交
113
        else:
W
Wu Yi 已提交
114
            if param_lr == 1.0:
Y
yuyang18 已提交
115
                return self._global_learning_rate()
W
Wu Yi 已提交
116
            else:
Y
yuyang18 已提交
117
                return self._global_learning_rate() * param_lr
118 119 120 121 122 123 124

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
125
        """
126 127
        pass

128
    def _finish_update(self, block, parameters_and_grads):
129 130 131 132 133 134 135 136
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
137
            None
138 139 140
        """
        pass

141 142 143 144 145 146
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
147 148 149 150 151 152 153 154 155 156 157
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
158
            raise Exception("Accumulator {} already exists for parameter {}".
159
                            format(name, param.name))
160 161
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
162 163
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
164
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
165
            persistable=True,
F
fengjiayi 已提交
166
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
167
            type=param.type,
168
            shape=shape)
Q
Qiao Longfei 已提交
169
        self.helper.set_variable_initializer(
170
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
171
        self._accumulators[name][param.name] = var
172
        return var
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
190 191 192 193
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
194 195 196
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
197 198 199
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
200 201

        Returns:
202 203 204 205
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
206
        """
207 208 209 210 211
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
212
        # for parameters and extend _finish_update method to add custom ops.
213 214

        # Create any accumulators
Q
Qiao Longfei 已提交
215
        program = loss.block.program
D
dzhwinter 已提交
216
        self._dtype = loss.dtype
217
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
218 219
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
220 221 222
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
223
            self._create_global_learning_rate()
W
Wu Yi 已提交
224 225
            if self._LARS_weight_decay > 0.0:
                layers.append_LARS(parameters_and_grads,
Y
yuyang18 已提交
226
                                   self._global_learning_rate(),
W
Wu Yi 已提交
227
                                   self._LARS_weight_decay)
228 229 230

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
231 232
                if param_and_grad[1] is None:
                    continue
Y
yuyang18 已提交
233
                with param_and_grad[0].block.program.optimized_guard(
234 235
                        param_and_grad):
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
236 237 238
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
239 240 241

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
242
            self._finish_update(loss.block, parameters_and_grads)
243

Y
Yancey1989 已提交
244
            end = len(global_block.ops)
W
Wu Yi 已提交
245
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
246

Q
Qiao Longfei 已提交
247 248
    def minimize(self,
                 loss,
249
                 startup_program=None,
Q
Qiao Longfei 已提交
250 251
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
252 253
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
254
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
255 256
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
257
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
258
                                       [error_clip_callback])
Y
Yu Yang 已提交
259

Y
Yu Yang 已提交
260 261
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
262 263
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
264
        # Add regularization if any
D
dzhwinter 已提交
265 266
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
267

Y
yuyang18 已提交
268 269
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
T
typhoonzero 已提交
270
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
271 272 273


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
288
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
289
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
290 291
    """

D
dzhwinter 已提交
292
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
293
        assert learning_rate is not None
Q
Qiao Longfei 已提交
294 295
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
296 297
        self.type = "sgd"

298 299
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
300

Q
Qiao Longfei 已提交
301 302 303 304 305 306
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
307
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
308
            },
309
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
310 311

        return sgd_op
312 313 314


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

329
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
330 331 332

        & else:

Q
qiaolongfei 已提交
333
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
334 335 336 337 338 339 340 341 342 343

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
344
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
345
            optimizer.minimize(cost)
346 347 348
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
349
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
350 351
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
352 353
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
354 355
        self.type = "momentum"
        self._momentum = momentum
356
        self._use_nesterov = bool(use_nesterov)
357 358 359 360 361

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
362
            self._add_accumulator(self._velocity_acc_str, p)
363 364 365 366 367 368 369 370 371 372 373 374 375

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
376
                "LearningRate": self._create_param_lr(param_and_grad)
377 378 379 380 381
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
382
            attrs={"mu": self._momentum,
383
                   "use_nesterov": self._use_nesterov})
384 385

        return momentum_op
386 387 388


class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
415 416 417
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
418
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
419 420
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
421 422
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
423 424 425 426 427 428 429
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
430
            self._add_accumulator(self._moment_acc_str, p)
431 432 433 434 435 436 437

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

438
        # Create the adagrad optimizer op
439 440 441 442 443 444
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
445
                "LearningRate": self._create_param_lr(param_and_grad)
446 447 448 449 450 451
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
452 453 454


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

489 490 491
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
492 493
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
494 495 496 497 498

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
499
                 epsilon=1e-8,
D
dzhwinter 已提交
500
                 **kwargs):
501 502 503 504
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
505 506
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
507 508 509 510 511 512 513 514 515 516
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
517 518
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
519 520 521 522 523 524 525 526 527 528 529 530
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
531 532 533 534 535 536 537 538

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
539 540 541 542 543
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

544
        # create the adam optimize op
545 546 547 548 549
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
550
                "LearningRate": self._create_param_lr(param_and_grad),
551 552
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
553 554
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
555 556 557 558 559 560 561 562 563 564 565 566 567 568
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

569
    def _finish_update(self, block, param_and_grads):
570 571 572
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
573
        main_block = block.program.global_block()
574 575 576 577
        for param, grad in param_and_grads:
            if grad is None:
                continue
            with param.block.program.optimized_guard([param, grad]):
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
593 594 595


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
632 633 634
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
635
    _beta1_pow_acc_str = "beta1_pow_acc"
636 637 638 639 640

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
641
                 epsilon=1e-8,
D
dzhwinter 已提交
642
                 **kwargs):
643 644 645 646
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
647 648
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
649 650 651 652 653 654 655 656
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
657 658
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
659 660 661 662 663 664
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
665 666 667 668 669 670 671

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
672 673
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
674 675 676 677 678 679
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
680
                "LearningRate": self._create_param_lr(param_and_grad),
681 682
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
683
                "Beta1Pow": beta1_pow_acc
684 685 686 687 688 689 690 691 692 693 694 695 696 697
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

698
    def _finish_update(self, block, parameters_and_grads):
699 700 701
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
702
        main_block = block.program.global_block()
703 704 705 706
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
            with param.block.program.optimized_guard([param, grad]):
707 708 709 710 711 712 713
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
714 715 716


class DecayedAdagradOptimizer(Optimizer):
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
745 746 747
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
748
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
749 750 751 752
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
753 754
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
785 786


787
class AdadeltaOptimizer(Optimizer):
788 789
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
790

791
    Simple Adadelta optimizer with average squared grad state and
792
    average squared update state.
793 794 795 796 797 798 799 800 801 802 803 804
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
805
        learning_rate(float): global learning rate
806 807 808 809 810 811 812 813 814
        rho(float): rho in equation
        epsilon(float): epsilon in equation

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
815
    """
816

817 818 819 820
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

    def __init__(self, learning_rate, epsilon=1.0e-6, rho=0.95, **kwargs):
821 822 823 824 825 826
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
827 828 829 830 831 832 833
        super(AdadeltaOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
834 835
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
836 837 838 839 840 841

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
842 843
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
870 871 872 873 874 875 876 877 878 879
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
880
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
881 882 883 884

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
885
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
886 887 888 889 890 891

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
892
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
893 894 895 896 897 898

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{v(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
899
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
900 901 902 903 904 905
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
906
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
907 908 909
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
910
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            set 0.0 by default.

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
                 **kwargs):
        super(RMSPropOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
                "MeanSquareOut": mean_square_acc
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
                "momentum": self._momentum
            })

        return rmsprop_op


Q
qiaolongfei 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

    def __init__(self, learning_rate, l1=0.0, l2=0.0, lr_power=-0.5, **kwargs):
        super(FtrlOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1108
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1109
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1110
Ftrl = FtrlOptimizer
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.

    Examples:
Q
qiaolongfei 已提交
1128 1129 1130

      .. code-block:: python

1131
        optimizer = fluid.optimizer.Momentum()
1132 1133
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1134 1135 1136 1137 1138
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1139 1140 1141 1142

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1143 1144 1145
    """

    def __init__(self,
W
wanghaoshuang 已提交
1146
                 average_window_rate,
1147 1148 1149 1150 1151 1152 1153
                 min_average_window=10000,
                 max_average_window=10000,
                 **kwargs):
        super(ModelAverage, self).__init__(0.0, **kwargs)
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1154

1155
        self.params_grads = []
1156 1157
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1158
            if param.do_model_average != False:
1159 1160 1161 1162
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1163
                    stop_gradient=True)
1164
                self.params_grads.append((param, grad))
1165

1166
        for param, grad in self.params_grads:
1167 1168 1169
            if grad is None:
                continue
            with param.block.program.optimized_guard([param, grad]):
1170
                self._append_average_accumulate_op(param)
1171

1172 1173 1174 1175
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1176
                self._add_average_apply_op(block, param_grad)
1177 1178 1179 1180 1181

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1182
                self._add_average_restore_op(block, param_grad)
1183

1184
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1185 1186 1187 1188 1189 1190
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1191
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1192
        old_num_accumulates = block._clone_variable(
1193
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1194
        num_updates = block._clone_variable(
1195 1196 1197 1198 1199 1200
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1201 1202 1203 1204
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
1205 1206 1207
        layers.elementwise_div(x=sum, y=tmp, out=param)

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1208 1209
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1249 1250
    @contextmanager
    def apply(self, executor, need_restore=True):
1251 1252
        """Apply average values to parameters of current model.
        """
1253 1254 1255 1256 1257 1258
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1259 1260 1261 1262

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1263
        executor.run(self.restore_program)