networks.py 61.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
R
ranqiu 已提交
14
import math
P
peterzhang2029 已提交
15

Z
zhangjinchao01 已提交
16 17 18 19
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
    IdentityActivation, TanhActivation, SequenceSoftmaxActivation
from attrs import ExtraAttr
from default_decorators import wrap_name_default, wrap_act_default, \
Y
Yu Yang 已提交
20
    wrap_param_default, wrap_bias_attr_default, wrap_param_attr_default
Z
zhangjinchao01 已提交
21 22 23 24
from layers import *  # There are too many layers used in network, so import *
from poolings import MaxPooling, SumPooling
from paddle.trainer.config_parser import *

Q
qijun 已提交
25 26
__all__ = [
    'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
27 28
    "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
    'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru',
R
ranqiu 已提交
29 30 31
    'simple_attention', 'dot_product_attention', 'multi_head_attention',
    'simple_gru2', 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm',
    'inputs', 'outputs'
Q
qijun 已提交
32
]
Z
zhangjinchao01 已提交
33 34 35 36 37

######################################################
#                     Text CNN                       #
######################################################

Q
qijun 已提交
38

Z
zhangjinchao01 已提交
39 40
@wrap_name_default("sequence_conv_pooling")
def sequence_conv_pool(input,
Q
qijun 已提交
41 42
                       context_len,
                       hidden_size,
Z
zhangjinchao01 已提交
43 44
                       name=None,
                       context_start=None,
Q
qijun 已提交
45 46
                       pool_type=None,
                       context_proj_layer_name=None,
Z
zhangjinchao01 已提交
47 48 49
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
Q
qijun 已提交
50 51
                       fc_bias_attr=None,
                       fc_act=None,
Z
zhangjinchao01 已提交
52 53 54 55 56
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
57
    Text convolution pooling group.
Z
zhangjinchao01 已提交
58 59 60

    Text input => Context Projection => FC Layer => Pooling => Output.

61
    :param name: group name.
Z
zhangjinchao01 已提交
62
    :type name: basestring
63
    :param input: input layer.
Z
zhangjinchao01 已提交
64 65 66 67 68 69
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
70
    :param context_start: context start position. See
Z
zhangjinchao01 已提交
71
                          context_projection's context_start.
72
    :type context_start: int|None
Z
zhangjinchao01 已提交
73
    :param pool_type: pooling layer type. See pooling_layer's document.
74
    :type pool_type: BasePoolingType
Z
zhangjinchao01 已提交
75 76 77
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
78 79 80
    :param context_proj_param_attr: padding parameter attribute of context projection layer.
                                    If false, it means padding always be zero.
    :type context_proj_param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
81 82 83
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
84
    :type fc_param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
85 86
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
87 88
    :type fc_bias_attr: ParameterAttribute|False|None
    :param fc_act: fc layer activation type. None means tanh.
Z
zhangjinchao01 已提交
89
    :type fc_act: BaseActivation
90 91 92
    :param pool_bias_attr: pooling layer bias attr. False if no bias.
                           None if user don't care.
    :type pool_bias_attr: ParameterAttribute|False|None
Z
zhangjinchao01 已提交
93 94 95 96 97 98
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
99
    :return: layer's output.
Z
zhangjinchao01 已提交
100 101 102 103 104 105
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

Q
qijun 已提交
106 107 108 109 110 111 112 113 114 115
    with mixed_layer(
            name=context_proj_layer_name,
            size=input.size * context_len,
            act=LinearActivation(),
            layer_attr=context_attr) as m:
        m += context_projection(
            input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)
Z
zhangjinchao01 已提交
116 117 118

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
Q
qijun 已提交
119 120 121 122 123 124 125 126
    fl = fc_layer(
        name=fc_layer_name,
        input=m,
        size=hidden_size,
        act=fc_act,
        layer_attr=fc_attr,
        param_attr=fc_param_attr,
        bias_attr=fc_bias_attr)
Z
zhangjinchao01 已提交
127

Q
qijun 已提交
128 129 130 131 132 133
    return pooling_layer(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)
Z
zhangjinchao01 已提交
134 135 136 137 138 139 140 141


text_conv_pool = sequence_conv_pool

############################################################################
#                       Images                                             #
############################################################################

Q
qijun 已提交
142

Z
zhangjinchao01 已提交
143
@wrap_name_default("conv_pool")
Q
qijun 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
def simple_img_conv_pool(input,
                         filter_size,
                         num_filters,
                         pool_size,
                         name=None,
                         pool_type=None,
                         act=None,
                         groups=1,
                         conv_stride=1,
                         conv_padding=0,
                         bias_attr=None,
                         num_channel=None,
                         param_attr=None,
                         shared_bias=True,
                         conv_layer_attr=None,
                         pool_stride=1,
                         pool_padding=0,
                         pool_layer_attr=None):
Z
zhangjinchao01 已提交
162 163 164
    """
    Simple image convolution and pooling group.

165
    Img input => Conv => Pooling => Output.
Z
zhangjinchao01 已提交
166

167
    :param name: group name.
Z
zhangjinchao01 已提交
168
    :type name: basestring
169
    :param input: input layer.
Z
zhangjinchao01 已提交
170
    :type input: LayerOutput
171
    :param filter_size: see img_conv_layer for details.
Z
zhangjinchao01 已提交
172
    :type filter_size: int
173
    :param num_filters: see img_conv_layer for details.
Z
zhangjinchao01 已提交
174
    :type num_filters: int
175
    :param pool_size: see img_pool_layer for details.
Z
zhangjinchao01 已提交
176
    :type pool_size: int
177
    :param pool_type: see img_pool_layer for details.
Z
zhangjinchao01 已提交
178
    :type pool_type: BasePoolingType
179
    :param act: see img_conv_layer for details.
Z
zhangjinchao01 已提交
180
    :type act: BaseActivation
181
    :param groups: see img_conv_layer for details.
Z
zhangjinchao01 已提交
182
    :type groups: int
183
    :param conv_stride: see img_conv_layer for details.
Z
zhangjinchao01 已提交
184
    :type conv_stride: int
185
    :param conv_padding: see img_conv_layer for details.
Z
zhangjinchao01 已提交
186
    :type conv_padding: int
187
    :param bias_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
188
    :type bias_attr: ParameterAttribute
189
    :param num_channel: see img_conv_layer for details.
Z
zhangjinchao01 已提交
190
    :type num_channel: int
191
    :param param_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
192
    :type param_attr: ParameterAttribute
193
    :param shared_bias: see img_conv_layer for details.
Z
zhangjinchao01 已提交
194
    :type shared_bias: bool
195
    :param conv_layer_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
196
    :type conv_layer_attr: ExtraLayerAttribute
197
    :param pool_stride: see img_pool_layer for details.
Z
zhangjinchao01 已提交
198
    :type pool_stride: int
199
    :param pool_padding: see img_pool_layer for details.
Z
zhangjinchao01 已提交
200
    :type pool_padding: int
201
    :param pool_layer_attr: see img_pool_layer for details.
Z
zhangjinchao01 已提交
202
    :type pool_layer_attr: ExtraLayerAttribute
203
    :return: layer's output
Z
zhangjinchao01 已提交
204 205
    :rtype: LayerOutput
    """
Q
qijun 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    _conv_ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=act,
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=bias_attr,
        param_attr=param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=_conv_,
        pool_size=pool_size,
        pool_type=pool_type,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)
Z
zhangjinchao01 已提交
228 229 230


@wrap_name_default("conv_bn_pool")
Q
qijun 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
def img_conv_bn_pool(input,
                     filter_size,
                     num_filters,
                     pool_size,
                     name=None,
                     pool_type=None,
                     act=None,
                     groups=1,
                     conv_stride=1,
                     conv_padding=0,
                     conv_bias_attr=None,
                     num_channel=None,
                     conv_param_attr=None,
                     shared_bias=True,
                     conv_layer_attr=None,
                     bn_param_attr=None,
                     bn_bias_attr=None,
                     bn_layer_attr=None,
                     pool_stride=1,
                     pool_padding=0,
                     pool_layer_attr=None):
Z
zhangjinchao01 已提交
252 253
    """
    Convolution, batch normalization, pooling group.
254 255
    
    Img input => Conv => BN => Pooling => Output.
Z
zhangjinchao01 已提交
256

257
    :param name: group name.
Z
zhangjinchao01 已提交
258
    :type name: basestring
259 260 261
    :param input: input layer.
    :type input: LayerOutput 
    :param filter_size: see img_conv_layer for details.
Z
zhangjinchao01 已提交
262
    :type filter_size: int
263
    :param num_filters: see img_conv_layer for details.
Z
zhangjinchao01 已提交
264
    :type num_filters: int
265
    :param pool_size: see img_pool_layer for details.
Z
zhangjinchao01 已提交
266
    :type pool_size: int
267
    :param pool_type: see img_pool_layer for details.
Z
zhangjinchao01 已提交
268
    :type pool_type: BasePoolingType
269
    :param act: see batch_norm_layer for details.
Z
zhangjinchao01 已提交
270
    :type act: BaseActivation
271
    :param groups: see img_conv_layer for details.
Z
zhangjinchao01 已提交
272
    :type groups: int
273
    :param conv_stride: see img_conv_layer for details.
Z
zhangjinchao01 已提交
274
    :type conv_stride: int
275
    :param conv_padding: see img_conv_layer for details.
Z
zhangjinchao01 已提交
276
    :type conv_padding: int
277
    :param conv_bias_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
278
    :type conv_bias_attr: ParameterAttribute
279
    :param num_channel: see img_conv_layer for details.
Z
zhangjinchao01 已提交
280
    :type num_channel: int
281
    :param conv_param_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
282
    :type conv_param_attr: ParameterAttribute
283
    :param shared_bias: see img_conv_layer for details.
Z
zhangjinchao01 已提交
284
    :type shared_bias: bool
285
    :param conv_layer_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
286
    :type conv_layer_attr: ExtraLayerOutput
287 288 289 290 291 292 293
    :param bn_param_attr: see batch_norm_layer for details.
    :type bn_param_attr: ParameterAttribute
    :param bn_bias_attr: see batch_norm_layer for details.
    :type bn_bias_attr: ParameterAttribute
    :param bn_layer_attr: see batch_norm_layer for details.
    :type bn_layer_attr: ExtraLayerAttribute
    :param pool_stride: see img_pool_layer for details.
Z
zhangjinchao01 已提交
294
    :type pool_stride: int
295
    :param pool_padding: see img_pool_layer for details.
Z
zhangjinchao01 已提交
296
    :type pool_padding: int
297
    :param pool_layer_attr: see img_pool_layer for details.
Z
zhangjinchao01 已提交
298
    :type pool_layer_attr: ExtraLayerAttribute
299
    :return: layer's output
Z
zhangjinchao01 已提交
300 301
    :rtype: LayerOutput
    """
Q
qijun 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    __conv__ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=LinearActivation(),
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=conv_bias_attr,
        param_attr=conv_param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    __bn__ = batch_norm_layer(
        name="%s_bn" % name,
        input=__conv__,
        act=act,
        bias_attr=bn_bias_attr,
        param_attr=bn_param_attr,
        layer_attr=bn_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=__bn__,
        pool_type=pool_type,
        pool_size=pool_size,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)


@wrap_act_default(param_names=['conv_act'], act=ReluActivation())
@wrap_param_default(
    param_names=['pool_type'], default_factory=lambda _: MaxPooling())
def img_conv_group(input,
                   conv_num_filter,
Z
zhangjinchao01 已提交
338 339 340 341 342 343 344 345
                   pool_size,
                   num_channels=None,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=0,
                   pool_stride=1,
Z
zlx 已提交
346 347
                   pool_type=None,
                   param_attr=None):
Z
zhangjinchao01 已提交
348 349 350
    """
    Image Convolution Group, Used for vgg net.

Z
zlx 已提交
351 352 353
    :param conv_batchnorm_drop_rate: if conv_with_batchnorm[i] is true,
        conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.
    :type conv_batchnorm_drop_rate: list
354
    :param input: input layer.
Z
zlx 已提交
355
    :type input: LayerOutput
356 357
    :param conv_num_filter: list of output channels num.
    :type conv_num_filter: list|tuple
Z
zlx 已提交
358 359 360 361 362 363 364 365 366 367
    :param pool_size: pooling filter size.
    :type pool_size: int
    :param num_channels: input channels num.
    :type num_channels: int
    :param conv_padding: convolution padding size.
    :type conv_padding: int
    :param conv_filter_size: convolution filter size.
    :type conv_filter_size: int
    :param conv_act: activation funciton after convolution.
    :type conv_act: BaseActivation
368 369
    :param conv_with_batchnorm: if conv_with_batchnorm[i] is true,
        there is a batch normalization operation after each convolution.
Z
zlx 已提交
370 371 372 373 374
    :type conv_with_batchnorm: list
    :param pool_stride: pooling stride size.
    :type pool_stride: int
    :param pool_type: pooling type.
    :type pool_type: BasePoolingType
375 376
    :param param_attr: param attribute of convolution layer,
                       None means default attribute.
Z
zlx 已提交
377
    :type param_attr: ParameterAttribute
378 379
    :return: layer's output
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    """
    tmp = input

    # Type checks
    assert isinstance(tmp, LayerOutput)
    assert isinstance(conv_num_filter, list) or isinstance(conv_num_filter,
                                                           tuple)
    for each_num_filter in conv_num_filter:
        assert isinstance(each_num_filter, int)

    assert isinstance(pool_size, int)

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
    conv_act = __extend_list__(conv_act)
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        extra_kwargs = dict()
        if num_channels is not None:
            extra_kwargs['num_channels'] = num_channels
            num_channels = None
        if conv_with_batchnorm[i]:
            extra_kwargs['act'] = LinearActivation()
        else:
            extra_kwargs['act'] = conv_act[i]

Q
qijun 已提交
414 415 416 417 418
        tmp = img_conv_layer(
            input=tmp,
            padding=conv_padding[i],
            filter_size=conv_filter_size[i],
            num_filters=conv_num_filter[i],
Z
zlx 已提交
419
            param_attr=param_attr,
Q
qijun 已提交
420
            **extra_kwargs)
Z
zhangjinchao01 已提交
421 422 423 424 425 426 427 428

        # logger.debug("tmp.num_filters = %d" % tmp.num_filters)

        if conv_with_batchnorm[i]:
            dropout = conv_batchnorm_drop_rate[i]
            if dropout == 0 or abs(dropout) < 1e-5:  # dropout not set
                tmp = batch_norm_layer(input=tmp, act=conv_act[i])
            else:
Q
qijun 已提交
429 430 431 432
                tmp = batch_norm_layer(
                    input=tmp,
                    act=conv_act[i],
                    layer_attr=ExtraAttr(drop_rate=dropout))
Z
zhangjinchao01 已提交
433

Q
qijun 已提交
434 435
    return img_pool_layer(
        input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type)
Z
zhangjinchao01 已提交
436 437 438 439


def small_vgg(input_image, num_channels, num_classes):
    def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None):
Q
qijun 已提交
440 441 442 443 444 445 446 447 448 449 450
        return img_conv_group(
            input=ipt,
            num_channels=num_channels_,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * times,
            conv_filter_size=3,
            conv_act=ReluActivation(),
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type=MaxPooling())
Z
zhangjinchao01 已提交
451 452 453 454 455

    tmp = __vgg__(input_image, 64, 2, [0.3, 0], num_channels)
    tmp = __vgg__(tmp, 128, 2, [0.4, 0])
    tmp = __vgg__(tmp, 256, 3, [0.4, 0.4, 0])
    tmp = __vgg__(tmp, 512, 3, [0.4, 0.4, 0])
Q
qijun 已提交
456 457
    tmp = img_pool_layer(
        input=tmp, stride=2, pool_size=2, pool_type=MaxPooling())
Z
zhangjinchao01 已提交
458
    tmp = dropout_layer(input=tmp, dropout_rate=0.5)
Q
qijun 已提交
459 460 461 462 463
    tmp = fc_layer(
        input=tmp,
        size=512,
        layer_attr=ExtraAttr(drop_rate=0.5),
        act=LinearActivation())
Z
zhangjinchao01 已提交
464 465 466 467 468 469 470 471
    tmp = batch_norm_layer(input=tmp, act=ReluActivation())
    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


def vgg_16_network(input_image, num_channels, num_classes=1000):
    """
    Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8

472 473 474
    :param num_classes: number of class.
    :type num_classes: int
    :param input_image: input layer.
Z
zhangjinchao01 已提交
475
    :type input_image: LayerOutput
476
    :param num_channels: input channels num.
Z
zhangjinchao01 已提交
477
    :type num_channels: int
478 479
    :return: layer's output
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
480 481
    """

Q
qijun 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
    tmp = img_conv_group(
        input=input_image,
        num_channels=num_channels,
        conv_padding=1,
        conv_num_filter=[64, 64],
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_size=2,
        pool_stride=2,
        pool_type=MaxPooling())

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[128, 128],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[256, 256, 256],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)
    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))
Z
zhangjinchao01 已提交
543 544 545 546 547 548 549 550

    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


############################################################################
#                       Recurrent                                          #
############################################################################

Q
qijun 已提交
551

Z
zhangjinchao01 已提交
552
@wrap_name_default("lstm")
Q
qijun 已提交
553 554 555 556 557 558 559 560 561 562 563
def simple_lstm(input,
                size,
                name=None,
                reverse=False,
                mat_param_attr=None,
                bias_param_attr=None,
                inner_param_attr=None,
                act=None,
                gate_act=None,
                state_act=None,
                mixed_layer_attr=None,
Z
zhangjinchao01 已提交
564 565 566 567
                lstm_cell_attr=None):
    """
    Simple LSTM Cell.

568 569
    It just combines a mixed layer with fully_matrix_projection and a lstmemory
    layer. The simple lstm cell was implemented with follow equations.
Z
zhangjinchao01 已提交
570 571 572

    ..  math::

L
luotao02 已提交
573
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
574

L
luotao02 已提交
575
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
576

L
luotao02 已提交
577
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
578

L
luotao02 已提交
579
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
580

L
luotao02 已提交
581
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
582

583 584
    Please refer to **Generating Sequences With Recurrent Neural Networks** for more
    details about lstm. Link_ is here.
Z
zhangjinchao01 已提交
585 586 587 588 589

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: lstm layer name.
    :type name: basestring
590
    :param input: layer's input.
Z
zhangjinchao01 已提交
591 592 593
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
594
    :param reverse: process the input in a reverse order or not.
Z
zhangjinchao01 已提交
595
    :type reverse: bool
596
    :param mat_param_attr: parameter attribute of matrix projection in mixed layer.
Z
zhangjinchao01 已提交
597 598 599 600
    :type mat_param_attr: ParameterAttribute
    :param bias_param_attr: bias parameter attribute. False means no bias, None
                            means default bias.
    :type bias_param_attr: ParameterAttribute|False
601
    :param inner_param_attr: parameter attribute of lstm cell.
Z
zhangjinchao01 已提交
602
    :type inner_param_attr: ParameterAttribute
603
    :param act: last activiation type of lstm.
Z
zhangjinchao01 已提交
604
    :type act: BaseActivation
605
    :param gate_act: gate activiation type of lstm.
Z
zhangjinchao01 已提交
606
    :type gate_act: BaseActivation
607
    :param state_act: state activiation type of lstm.
Z
zhangjinchao01 已提交
608
    :type state_act: BaseActivation
609
    :param mixed_layer_attr: extra attribute of mixed layer.
Z
zhangjinchao01 已提交
610
    :type mixed_layer_attr: ExtraLayerAttribute
611
    :param lstm_cell_attr: extra attribute of lstm.
Z
zhangjinchao01 已提交
612
    :type lstm_cell_attr: ExtraLayerAttribute
613
    :return: layer's output.
Z
zhangjinchao01 已提交
614 615 616
    :rtype: LayerOutput
    """
    fc_name = 'lstm_transform_%s' % name
Q
qijun 已提交
617 618 619 620 621 622
    with mixed_layer(
            name=fc_name,
            size=size * 4,
            act=IdentityActivation(),
            layer_attr=mixed_layer_attr,
            bias_attr=False) as m:
Z
zhangjinchao01 已提交
623 624
        m += full_matrix_projection(input, param_attr=mat_param_attr)

Q
qijun 已提交
625 626 627 628 629 630 631 632 633 634
    return lstmemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=bias_param_attr,
        param_attr=inner_param_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
        layer_attr=lstm_cell_attr)
Z
zhangjinchao01 已提交
635 636 637


@wrap_name_default('lstm_unit')
Q
qijun 已提交
638
def lstmemory_unit(input,
639
                   out_memory=None,
Q
qijun 已提交
640 641 642 643 644 645
                   name=None,
                   size=None,
                   param_attr=None,
                   act=None,
                   gate_act=None,
                   state_act=None,
646 647
                   input_proj_bias_attr=None,
                   input_proj_layer_attr=None,
Q
qijun 已提交
648
                   lstm_bias_attr=None,
649
                   lstm_layer_attr=None):
Z
zhangjinchao01 已提交
650
    """
651 652 653
    lstmemory_unit defines the caculation process of a LSTM unit during a 
    single time step. This function is not a recurrent layer, so it can not be
    directly used to process sequence input. This function is always used in
C
caoying03 已提交
654 655 656 657 658 659 660 661 662
    recurrent_group (see layers.py for more details) to implement attention
    mechanism.

    Please refer to  **Generating Sequences With Recurrent Neural Networks**
    for more details about LSTM. The link goes as follows:
    .. _Link: https://arxiv.org/abs/1308.0850

    ..  math::

663
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
C
caoying03 已提交
664

665
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
C
caoying03 已提交
666

667
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
C
caoying03 已提交
668

669
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
C
caoying03 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682

        h_t & = o_t tanh(c_t)

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_unit(input=[layer1],
                                   size=256,
                                   act=TanhActivation(),
                                   gate_act=SigmoidActivation(),
                                   state_act=TanhActivation())

Z
zhangjinchao01 已提交
683

P
peterzhang2029 已提交
684
    :param input: Input layer.
L
luotao02 已提交
685
    :type input: LayerOutput
P
peterzhang2029 已提交
686
    :param out_memory: The output of previous time step.
687
    :type out_memory: LayerOutput | None
P
peterzhang2029 已提交
688
    :param name: The lstmemory unit name.
L
luotao02 已提交
689
    :type name: basestring
P
peterzhang2029 已提交
690
    :param size: The lstmemory unit size.
L
luotao02 已提交
691
    :type size: int
P
peterzhang2029 已提交
692 693 694
    :param param_attr: The parameter attribute for the weights in
                     input to hidden projection.
                     None means default attribute.
L
luotao02 已提交
695
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
696
    :param act: The last activiation type of lstm.
L
luotao02 已提交
697
    :type act: BaseActivation
P
peterzhang2029 已提交
698
    :param gate_act: The gate activiation type of lstm.
L
luotao02 已提交
699
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
700
    :param state_act: The state activiation type of lstm.
L
luotao02 已提交
701
    :type state_act: BaseActivation
P
peterzhang2029 已提交
702 703 704 705 706
    :param input_proj_bias_attr: The parameter attribute for the bias in
                      input to hidden projection.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
P
peterzhang2029 已提交
707
    :type input_proj_bias_attr: ParameterAttribute|bool|None
P
peterzhang2029 已提交
708 709 710
    :param input_proj_layer_attr: The extra layer attribute for
                     input to hidden projection of the LSTM unit,
                     such as dropout, error clipping.
711
    :type input_proj_layer_attr: ExtraLayerAttribute
P
peterzhang2029 已提交
712 713 714 715
    :param lstm_bias_attr: The parameter attribute for the bias in lstm layer.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
P
peterzhang2029 已提交
716
    :type lstm_bias_attr: ParameterAttribute|True|None
P
peterzhang2029 已提交
717
    :param lstm_layer_attr: The extra attribute of lstm layer.
L
luotao02 已提交
718
    :type lstm_layer_attr: ExtraLayerAttribute
P
peterzhang2029 已提交
719
    :return: The lstmemory unit name.
L
luotao02 已提交
720
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
721 722 723 724
    """
    if size is None:
        assert input.size % 4 == 0
        size = input.size / 4
725 726 727 728 729
    if out_memory is None:
        out_mem = memory(name=name, size=size)
    else:
        out_mem = out_memory

Z
zhangjinchao01 已提交
730 731
    state_mem = memory(name="%s_state" % name, size=size)

Q
qijun 已提交
732 733 734
    with mixed_layer(
            name="%s_input_recurrent" % name,
            size=size * 4,
735 736
            bias_attr=input_proj_bias_attr,
            layer_attr=input_proj_layer_attr,
Q
qijun 已提交
737
            act=IdentityActivation()) as m:
Z
zhangjinchao01 已提交
738 739 740 741 742 743 744 745 746 747 748 749
        m += identity_projection(input=input)
        m += full_matrix_projection(input=out_mem, param_attr=param_attr)

    lstm_out = lstm_step_layer(
        name=name,
        input=m,
        state=state_mem,
        size=size,
        bias_attr=lstm_bias_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
Q
qijun 已提交
750
        layer_attr=lstm_layer_attr)
751
    get_output_layer(name='%s_state' % name, input=lstm_out, arg_name='state')
Z
zhangjinchao01 已提交
752 753 754 755 756

    return lstm_out


@wrap_name_default('lstm_group')
Q
qijun 已提交
757 758 759
def lstmemory_group(input,
                    size=None,
                    name=None,
760
                    out_memory=None,
Q
qijun 已提交
761 762 763 764 765
                    reverse=False,
                    param_attr=None,
                    act=None,
                    gate_act=None,
                    state_act=None,
766 767
                    input_proj_bias_attr=None,
                    input_proj_layer_attr=None,
Q
qijun 已提交
768
                    lstm_bias_attr=None,
769
                    lstm_layer_attr=None):
Z
zhangjinchao01 已提交
770
    """
771
    lstm_group is a recurrent_group version of Long Short Term Memory. It
C
caoying03 已提交
772 773
    does exactly the same calculation as the lstmemory layer (see lstmemory in
    layers.py for the maths) does. A promising benefit is that LSTM memory
774
    cell states(or hidden states) in every time step are accessible to the
C
caoying03 已提交
775
    user. This is especially useful in attention model. If you do not need to
776
    access the internal states of the lstm and merely use its outputs,
777
    it is recommended to use the lstmemory, which is relatively faster than
C
caoying03 已提交
778 779 780 781
    lstmemory_group.

    NOTE: In PaddlePaddle's implementation, the following input-to-hidden
    multiplications:
782 783
    :math:`W_{x_i}x_{t}` , :math:`W_{x_f}x_{t}`,
    :math:`W_{x_c}x_t`, :math:`W_{x_o}x_{t}` are not done in lstmemory_unit to
C
caoying03 已提交
784 785 786 787 788 789 790 791 792 793 794 795
    speed up the calculations. Consequently, an additional mixed_layer with
    full_matrix_projection must be included before lstmemory_unit is called.

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_group(input=[layer1],
                                    size=256,
                                    act=TanhActivation(),
                                    gate_act=SigmoidActivation(),
                                    state_act=TanhActivation())
Z
zhangjinchao01 已提交
796

P
peterzhang2029 已提交
797
    :param input: Input layer.
L
luotao02 已提交
798
    :type input: LayerOutput
P
peterzhang2029 已提交
799
    :param size: The lstmemory group size.
L
luotao02 已提交
800
    :type size: int
P
peterzhang2029 已提交
801
    :param name: The name of lstmemory group.
L
luotao02 已提交
802
    :type name: basestring
P
peterzhang2029 已提交
803
    :param out_memory: The output of previous time step.
804
    :type out_memory: LayerOutput | None
P
peterzhang2029 已提交
805
    :param reverse: Process the input in a reverse order or not.
L
luotao02 已提交
806
    :type reverse: bool
P
peterzhang2029 已提交
807 808 809
    :param param_attr: The parameter attribute for the weights in
                     input to hidden projection.
                     None means default attribute.
L
luotao02 已提交
810
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
811
    :param act: The last activiation type of lstm.
L
luotao02 已提交
812
    :type act: BaseActivation
P
peterzhang2029 已提交
813
    :param gate_act: The gate activiation type of lstm.
L
luotao02 已提交
814
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
815
    :param state_act: The state activiation type of lstm.
L
luotao02 已提交
816
    :type state_act: BaseActivation
P
peterzhang2029 已提交
817 818 819 820 821
    :param input_proj_bias_attr: The parameter attribute for the bias in
                      input to hidden projection.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
P
peterzhang2029 已提交
822
    :type input_proj_bias_attr: ParameterAttribute|bool|None
P
peterzhang2029 已提交
823 824 825
    :param input_proj_layer_attr: The extra layer attribute for
                     input to hidden projection of the LSTM unit,
                     such as dropout, error clipping.
826
    :type input_proj_layer_attr: ExtraLayerAttribute
P
peterzhang2029 已提交
827 828 829 830 831 832
    :param lstm_bias_attr: The parameter attribute for the bias in lstm layer.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
    :type lstm_bias_attr: ParameterAttribute|True|None
    :param lstm_layer_attr: The extra attribute of lstm layer.
L
luotao02 已提交
833
    :type lstm_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
834
    :return: the lstmemory group.
L
luotao02 已提交
835
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
836 837 838
    """

    def __lstm_step__(ipt):
Q
qijun 已提交
839 840 841 842 843 844 845
        return lstmemory_unit(
            input=ipt,
            name=name,
            size=size,
            act=act,
            gate_act=gate_act,
            state_act=state_act,
846 847 848 849
            out_memory=out_memory,
            input_proj_bias_attr=input_proj_bias_attr,
            input_proj_layer_attr=input_proj_layer_attr,
            param_attr=param_attr,
Q
qijun 已提交
850
            lstm_layer_attr=lstm_layer_attr,
851
            lstm_bias_attr=lstm_bias_attr)
Q
qijun 已提交
852 853 854 855 856 857

    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__lstm_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
858 859 860 861


@wrap_name_default('gru_unit')
def gru_unit(input,
862
             memory_boot=None,
Z
zhangjinchao01 已提交
863 864 865
             size=None,
             name=None,
             gru_bias_attr=None,
W
wangyang59 已提交
866
             gru_param_attr=None,
Z
zhangjinchao01 已提交
867 868
             act=None,
             gate_act=None,
Y
Yu Yang 已提交
869 870
             gru_layer_attr=None,
             naive=False):
Z
zhangjinchao01 已提交
871
    """
872 873 874
    gru_unit defines the calculation process of a gated recurrent unit during a single 
    time step. This function is not a recurrent layer, so it can not be
    directly used to process sequence input. This function is always used in
C
caoying03 已提交
875 876
    the recurrent_group (see layers.py for more details) to implement attention
    mechanism.
Z
zhangjinchao01 已提交
877

C
caoying03 已提交
878 879
    Please see grumemory in layers.py for the details about the maths.

880
    :param input: input layer.
Z
zhangjinchao01 已提交
881
    :type input: LayerOutput
882 883
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
884 885 886 887
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
888
    :param act: activation type of gru
C
caoying03 已提交
889
    :type act: BaseActivation
890
    :param gate_act: gate activation type or gru
C
caoying03 已提交
891
    :type gate_act: BaseActivation
892 893
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
894 895
    :return: the gru output layer.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
896 897 898 899 900 901
    """

    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3

902
    out_mem = memory(name=name, size=size, boot_layer=memory_boot)
Z
zhangjinchao01 已提交
903

Y
Yu Yang 已提交
904 905 906 907 908 909
    if naive:
        __step__ = gru_step_naive_layer
    else:
        __step__ = gru_step_layer

    gru_out = __step__(
Z
zhangjinchao01 已提交
910 911 912 913 914
        name=name,
        input=input,
        output_mem=out_mem,
        size=size,
        bias_attr=gru_bias_attr,
W
wangyang59 已提交
915
        param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
916 917
        act=act,
        gate_act=gate_act,
Q
qijun 已提交
918
        layer_attr=gru_layer_attr)
Z
zhangjinchao01 已提交
919 920 921 922 923
    return gru_out


@wrap_name_default('gru_group')
def gru_group(input,
924
              memory_boot=None,
Z
zhangjinchao01 已提交
925 926 927 928
              size=None,
              name=None,
              reverse=False,
              gru_bias_attr=None,
W
wangyang59 已提交
929
              gru_param_attr=None,
Q
qijun 已提交
930 931
              act=None,
              gate_act=None,
Y
Yu Yang 已提交
932 933
              gru_layer_attr=None,
              naive=False):
C
caoying03 已提交
934
    """
935
    gru_group is a recurrent_group version of Gated Recurrent Unit. It
C
caoying03 已提交
936
    does exactly the same calculation as the grumemory layer does. A promising
937 938
    benefit is that gru hidden states are accessible to the user. This is
    especially useful in attention model. If you do not need to access
939
    any internal state and merely use the outputs of a GRU, it is recommended
C
caoying03 已提交
940 941 942 943 944 945 946 947
    to use the grumemory, which is relatively faster.

    Please see grumemory in layers.py for more detail about the maths.

    The example usage is:

    ..  code-block:: python

948
        gru = gru_group(input=[layer1],
C
caoying03 已提交
949 950 951 952
                        size=256,
                        act=TanhActivation(),
                        gate_act=SigmoidActivation())

953
    :param input: input layer.
C
caoying03 已提交
954
    :type input: LayerOutput
955 956
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
957 958 959 960
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
961
    :param reverse: process the input in a reverse order or not.
C
caoying03 已提交
962
    :type reverse: bool
963
    :param act: activiation type of gru
C
caoying03 已提交
964
    :type act: BaseActivation
965
    :param gate_act: gate activiation type of gru
C
caoying03 已提交
966
    :type gate_act: BaseActivation
967 968 969 970 971
    :param gru_bias_attr: bias parameter attribute of gru layer,
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
972 973 974 975
    :return: the gru group.
    :rtype: LayerOutput
    """

Z
zhangjinchao01 已提交
976 977 978
    def __gru_step__(ipt):
        return gru_unit(
            input=ipt,
979
            memory_boot=memory_boot,
Z
zhangjinchao01 已提交
980 981 982
            name=name,
            size=size,
            gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
983
            gru_param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
984 985
            act=act,
            gate_act=gate_act,
Y
Yu Yang 已提交
986 987
            gru_layer_attr=gru_layer_attr,
            naive=naive)
Z
zhangjinchao01 已提交
988

Q
qijun 已提交
989 990 991 992 993
    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__gru_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004


@wrap_name_default('simple_gru')
def simple_gru(input,
               size,
               name=None,
               reverse=False,
               mixed_param_attr=None,
               mixed_bias_param_attr=None,
               mixed_layer_attr=None,
               gru_bias_attr=None,
W
wangyang59 已提交
1005
               gru_param_attr=None,
Z
zhangjinchao01 已提交
1006 1007
               act=None,
               gate_act=None,
Y
Yu Yang 已提交
1008 1009
               gru_layer_attr=None,
               naive=False):
C
caoying03 已提交
1010
    """
1011
    You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
1012 1013 1014
    simple_gru in network.py. The reason why there are so many interfaces is
    that we have two ways to implement recurrent neural network. One way is to
    use one complete layer to implement rnn (including simple rnn, gru and lstm)
1015
    with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But 
1016
    the multiplication operation :math:`W x_t` is not computed in these layers.
1017
    See details in their interfaces in layers.py.
1018 1019 1020 1021 1022 1023
    The other implementation is to use an recurrent group which can ensemble a
    series of layers to compute rnn step by step. This way is flexible for
    attenion mechanism or other complex connections.

    - gru_step_layer: only compute rnn by one step. It needs an memory as input
      and can be used in recurrent group.
1024
    - gru_unit: a wrapper of gru_step_layer with memory.
1025 1026
    - gru_group: a GRU cell implemented by a combination of multiple layers in
      recurrent group.
1027
      But :math:`W x_t` is not done in group.
1028
    - gru_memory: a GRU cell implemented by one layer, which does same calculation
1029 1030
      with gru_group and is faster than gru_group.
    - simple_gru: a complete GRU implementation inlcuding :math:`W x_t` and
1031
      gru_group. :math:`W` contains :math:`W_r`, :math:`W_z` and :math:`W`, see
1032
      formula in grumemory.
1033

C
caoying03 已提交
1034 1035 1036 1037 1038 1039 1040
    The computational speed is that, grumemory is relatively better than
    gru_group, and gru_group is relatively better than simple_gru.

    The example usage is:

    ..  code-block:: python

1041
        gru = simple_gru(input=[layer1], size=256)
C
caoying03 已提交
1042

1043
    :param input: input layer.
C
caoying03 已提交
1044 1045 1046 1047 1048
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
1049
    :param reverse: process the input in a reverse order or not.
C
caoying03 已提交
1050
    :type reverse: bool
1051
    :param act: activiation type of gru
C
caoying03 已提交
1052
    :type act: BaseActivation
1053
    :param gate_act: gate activiation type of gru
C
caoying03 已提交
1054
    :type gate_act: BaseActivation
1055 1056 1057 1058 1059
    :param gru_bias_attr: bias parameter attribute of gru layer,
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
1060 1061 1062
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1063 1064 1065 1066 1067
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_param_attr,
            layer_attr=mixed_layer_attr) as m:
Z
zhangjinchao01 已提交
1068 1069
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1070 1071 1072 1073 1074 1075
    return gru_group(
        name=name,
        size=size,
        input=m,
        reverse=reverse,
        gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
1076
        gru_param_attr=gru_param_attr,
Q
qijun 已提交
1077 1078
        act=act,
        gate_act=gate_act,
Y
Yu Yang 已提交
1079 1080
        gru_layer_attr=gru_layer_attr,
        naive=naive)
Z
zhangjinchao01 已提交
1081 1082


1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
@wrap_name_default('simple_gru2')
def simple_gru2(input,
                size,
                name=None,
                reverse=False,
                mixed_param_attr=None,
                mixed_bias_attr=None,
                gru_param_attr=None,
                gru_bias_attr=None,
                act=None,
                gate_act=None,
                mixed_layer_attr=None,
Q
qijun 已提交
1095
                gru_cell_attr=None):
1096
    """
1097 1098
    simple_gru2 is the same with simple_gru, but using grumemory instead.
    Please refer to grumemory in layers.py for more detail about the math.
1099 1100 1101 1102 1103 1104 1105 1106
    simple_gru2 is faster than simple_gru.

    The example usage is:

    ..  code-block:: python

        gru = simple_gru2(input=[layer1], size=256)

1107
    :param input: input layer.
1108 1109 1110 1111 1112
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
1113
    :param reverse: process the input in a reverse order or not.
1114
    :type reverse: bool
1115
    :param act: activiation type of gru
1116
    :type act: BaseActivation
1117
    :param gate_act: gate activiation type of gru
1118
    :type gate_act: BaseActivation
1119 1120 1121
    :param gru_bias_attr: bias parameter attribute of gru layer, 
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
Q
qiaolongfei 已提交
1122 1123 1124
    :param gru_param_attr: param parameter attribute of gru layer,
                          None means default param.
    :type gru_param_attr: ParameterAttribute|None
1125 1126 1127
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1128 1129 1130 1131 1132
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_attr,
            layer_attr=mixed_layer_attr) as m:
1133 1134
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143
    return grumemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=gru_bias_attr,
        param_attr=gru_param_attr,
        act=act,
        gate_act=gate_act,
        layer_attr=gru_cell_attr)
1144 1145 1146


@wrap_name_default("bidirectional_gru")
Q
qijun 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
def bidirectional_gru(input,
                      size,
                      name=None,
                      return_seq=False,
                      fwd_mixed_param_attr=None,
                      fwd_mixed_bias_attr=None,
                      fwd_gru_param_attr=None,
                      fwd_gru_bias_attr=None,
                      fwd_act=None,
                      fwd_gate_act=None,
                      fwd_mixed_layer_attr=None,
                      fwd_gru_cell_attr=None,
                      bwd_mixed_param_attr=None,
                      bwd_mixed_bias_attr=None,
                      bwd_gru_param_attr=None,
                      bwd_gru_bias_attr=None,
                      bwd_act=None,
                      bwd_gate_act=None,
                      bwd_mixed_layer_attr=None,
                      bwd_gru_cell_attr=None,
                      last_seq_attr=None,
                      first_seq_attr=None,
                      concat_attr=None,
                      concat_act=None):
1171 1172
    """
    A bidirectional_gru is a recurrent unit that iterates over the input
1173
    sequence both in forward and backward orders, and then concatenate two
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    outputs to form a final output. However, concatenation of two outputs
    is not the only way to form the final output, you can also, for example,
    just add them together.

    The example usage is:

    ..  code-block:: python

        bi_gru = bidirectional_gru(input=[input1], size=512)

    :param name: bidirectional gru layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: gru layer size.
    :type size: int
1190
    :param return_seq: If set False, the last time step of output are
1191
                       concatenated and returned.
1192 1193
                       If set True, the entire output sequences in forward 
                       and backward directions are concatenated and returned.
1194 1195 1196 1197 1198 1199
    :type return_seq: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1200 1201 1202 1203 1204 1205
    fw = simple_gru2(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
1206

Q
qijun 已提交
1207 1208 1209 1210 1211 1212 1213
    bw = simple_gru2(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
1214 1215

    if return_seq:
Q
qijun 已提交
1216 1217
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
1218
    else:
Q
qijun 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
1228 1229


Z
zhangjinchao01 已提交
1230
@wrap_name_default("bidirectional_lstm")
Q
qijun 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
def bidirectional_lstm(input,
                       size,
                       name=None,
                       return_seq=False,
                       fwd_mat_param_attr=None,
                       fwd_bias_param_attr=None,
                       fwd_inner_param_attr=None,
                       fwd_act=None,
                       fwd_gate_act=None,
                       fwd_state_act=None,
                       fwd_mixed_layer_attr=None,
                       fwd_lstm_cell_attr=None,
                       bwd_mat_param_attr=None,
                       bwd_bias_param_attr=None,
                       bwd_inner_param_attr=None,
                       bwd_act=None,
                       bwd_gate_act=None,
                       bwd_state_act=None,
                       bwd_mixed_layer_attr=None,
                       bwd_lstm_cell_attr=None,
                       last_seq_attr=None,
                       first_seq_attr=None,
                       concat_attr=None,
                       concat_act=None):
Z
zhangjinchao01 已提交
1255
    """
C
caoying03 已提交
1256
    A bidirectional_lstm is a recurrent unit that iterates over the input
1257 1258
    sequence both in forward and backward orders, and then concatenate two
    outputs to form a final output. However, concatenation of two outputs
C
caoying03 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    is not the only way to form the final output, you can also, for example,
    just add them together.

    Please refer to  **Neural Machine Translation by Jointly Learning to Align
    and Translate** for more details about the bidirectional lstm.
    The link goes as follows:
    .. _Link: https://arxiv.org/pdf/1409.0473v3.pdf

    The example usage is:

    ..  code-block:: python

1271
        bi_lstm = bidirectional_lstm(input=[input1], size=512)
Z
zhangjinchao01 已提交
1272 1273 1274 1275 1276 1277 1278

    :param name: bidirectional lstm layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
1279
    :param return_seq: If set False, the last time step of output are
C
caoying03 已提交
1280
                       concatenated and returned.
1281 1282
                       If set True, the entire output sequences in forward 
                       and backward directions are concatenated and returned.
Z
zhangjinchao01 已提交
1283
    :type return_seq: bool
1284
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1285 1286 1287 1288
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1289 1290 1291 1292 1293 1294
    fw = simple_lstm(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
Z
zhangjinchao01 已提交
1295

Q
qijun 已提交
1296 1297 1298 1299 1300 1301 1302
    bw = simple_lstm(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
Z
zhangjinchao01 已提交
1303 1304

    if return_seq:
Q
qijun 已提交
1305 1306
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
Z
zhangjinchao01 已提交
1307
    else:
Q
qijun 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
Z
zhangjinchao01 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328


@wrap_name_default()
@wrap_act_default(param_names=['weight_act'], act=TanhActivation())
def simple_attention(encoded_sequence,
                     encoded_proj,
                     decoder_state,
                     transform_param_attr=None,
                     softmax_param_attr=None,
                     weight_act=None,
                     name=None):
    """
1329
    Calculate and return a context vector with attention mechanism.
1330
    Size of the context vector equals to size of the encoded_sequence.
Z
zhangjinchao01 已提交
1331 1332

    ..  math::
L
luotao02 已提交
1333 1334 1335 1336 1337

        a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})

        e_{i,j} & = a(s_{i-1}, h_{j})

1338
        a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}}
L
luotao02 已提交
1339 1340

        c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}h_{j}
Z
zhangjinchao01 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

    where :math:`h_{j}` is the jth element of encoded_sequence,
    :math:`U_{a}h_{j}` is the jth element of encoded_proj
    :math:`s_{i-1}` is decoder_state
    :math:`f` is weight_act, and is set to tanh by default.

    Please refer to **Neural Machine Translation by Jointly Learning to
    Align and Translate** for more details. The link is as follows:
    https://arxiv.org/abs/1409.0473.

    The example usage is:
L
luotao02 已提交
1352

Z
zhangjinchao01 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361
    ..  code-block:: python

        context = simple_attention(encoded_sequence=enc_seq,
                                   encoded_proj=enc_proj,
                                   decoder_state=decoder_prev,)

    :param name: name of the attention model.
    :type name: basestring
    :param softmax_param_attr: parameter attribute of sequence softmax
1362
                               that is used to produce attention weight.
Z
zhangjinchao01 已提交
1363
    :type softmax_param_attr: ParameterAttribute
1364 1365
    :param weight_act: activation of the attention model.
    :type weight_act: BaseActivation
Z
zhangjinchao01 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    :param encoded_sequence: output of the encoder
    :type encoded_sequence: LayerOutput
    :param encoded_proj: attention weight is computed by a feed forward neural
                         network which has two inputs : decoder's hidden state
                         of previous time step and encoder's output.
                         encoded_proj is output of the feed-forward network for
                         encoder's output. Here we pre-compute it outside
                         simple_attention for speed consideration.
    :type encoded_proj: LayerOutput
    :param decoder_state: hidden state of decoder in previous time step
    :type decoder_state: LayerOutput
    :param transform_param_attr: parameter attribute of the feed-forward
                                network that takes decoder_state as inputs to
                                compute attention weight.
    :type transform_param_attr: ParameterAttribute
    :return: a context vector
R
ranqiu 已提交
1382
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1383 1384 1385 1386 1387
    """
    assert encoded_proj.size == decoder_state.size
    proj_size = encoded_proj.size

    with mixed_layer(size=proj_size, name="%s_transform" % name) as m:
Q
qijun 已提交
1388 1389
        m += full_matrix_projection(
            decoder_state, param_attr=transform_param_attr)
Z
zhangjinchao01 已提交
1390

Q
qijun 已提交
1391 1392
    expanded = expand_layer(
        input=m, expand_as=encoded_sequence, name='%s_expand' % name)
Z
zhangjinchao01 已提交
1393

Q
qijun 已提交
1394 1395
    with mixed_layer(
            size=proj_size, act=weight_act, name="%s_combine" % name) as m:
Z
zhangjinchao01 已提交
1396 1397 1398 1399 1400
        m += identity_projection(expanded)
        m += identity_projection(encoded_proj)

    # sequence softmax is used to normalize similarities between decoder state
    # and encoder outputs into a distribution
Q
qijun 已提交
1401 1402 1403 1404 1405 1406 1407
    attention_weight = fc_layer(
        input=m,
        size=1,
        act=SequenceSoftmaxActivation(),
        param_attr=softmax_param_attr,
        name="%s_softmax" % name,
        bias_attr=False)
Z
zhangjinchao01 已提交
1408

Q
qijun 已提交
1409 1410 1411 1412
    scaled = scaling_layer(
        weight=attention_weight,
        input=encoded_sequence,
        name='%s_scaling' % name)
Z
zhangjinchao01 已提交
1413

Q
qijun 已提交
1414 1415
    return pooling_layer(
        input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
Z
zhangjinchao01 已提交
1416 1417


R
ranqiu 已提交
1418 1419
@wrap_name_default()
def dot_product_attention(encoded_sequence,
1420
                          attended_sequence,
R
ranqiu 已提交
1421 1422 1423 1424 1425
                          transformed_state,
                          softmax_param_attr=None,
                          name=None):
    """
    Calculate and return a context vector with dot-product attention mechanism.
1426
    The dimension of the context vector equals to that of the attended_sequence.
R
ranqiu 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

    ..  math::

        a(s_{i-1},h_{j}) & = s_{i-1}^\mathrm{T} h_{j}

        e_{i,j} & = a(s_{i-1}, h_{j})

        a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}}

        c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}z_{j}

    where :math:`h_{j}` is the jth element of encoded_sequence,
1439 1440
    :math:`z_{j}` is the jth element of attended_sequence,
    :math:`s_{i-1}` is transformed_state.
R
ranqiu 已提交
1441 1442 1443 1444 1445 1446

    The example usage is:

    ..  code-block:: python

        context = dot_product_attention(encoded_sequence=enc_seq,
1447
                                        attended_sequence=att_seq,
R
ranqiu 已提交
1448 1449
                                        transformed_state=state,)

1450 1451
    :param name: A prefix attached to the name of each layer that defined inside
                 the dot_product_attention.
R
ranqiu 已提交
1452
    :type name: basestring
1453
    :param softmax_param_attr: The parameter attribute of sequence softmax
R
ranqiu 已提交
1454 1455
                               that is used to produce attention weight.
    :type softmax_param_attr: ParameterAttribute
1456
    :param encoded_sequence: The output hidden vectors of the encoder.
R
ranqiu 已提交
1457
    :type encoded_sequence: LayerOutput
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
    :param attended_sequence: The attention weight is computed by a feed forward neural
                              network which has two inputs : decoder's transformed hidden
                              state of previous time step and encoder's output.
                              attended_sequence is the sequence to be attended.
    :type attended_sequence: LayerOutput
    :param transformed_state: The transformed hidden state of decoder in previous time step.
                              Since the dot-product operation will be performed on it and the
                              encoded_sequence, their dimensions must be equal. For flexibility,
                              we suppose transformations of the decoder's hidden state have been
                              done outside dot_product_attention and no more will be performed
                              inside. Then users can use either the original or transformed one.
R
ranqiu 已提交
1469
    :type transformed_state: LayerOutput
1470
    :return: The context vector.
R
ranqiu 已提交
1471 1472 1473 1474 1475 1476
    :rtype: LayerOutput
    """
    assert transformed_state.size == encoded_sequence.size

    expanded = expand_layer(
        input=transformed_state,
R
ranqiu 已提交
1477
        expand_as=encoded_sequence,
R
ranqiu 已提交
1478 1479
        name='%s_expand' % name)

R
ranqiu 已提交
1480 1481
    m = dot_prod_layer(
        input1=expanded, input2=encoded_sequence, name='%s_dot-product' % name)
R
ranqiu 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

    attention_weight = fc_layer(
        input=m,
        size=1,
        act=SequenceSoftmaxActivation(),
        param_attr=softmax_param_attr,
        name="%s_softmax" % name,
        bias_attr=False)

    scaled = scaling_layer(
        weight=attention_weight,
1493
        input=attended_sequence,
R
ranqiu 已提交
1494 1495 1496 1497 1498 1499
        name='%s_scaling' % name)

    return pooling_layer(
        input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)


R
ranqiu 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
@wrap_name_default()
def multi_head_attention(query,
                         key,
                         value,
                         key_proj_size,
                         value_proj_size,
                         head_num,
                         attention_type,
                         softmax_param_attr=None,
                         name=None):
    """
    Calculate and return a context vector with dot-product attention mechanism.
    The dimension of the context vector equals to value_proj_size * head_num.

    Please refer to **Attention Is All You Need** for more details. The link is
    as follows:
    https://arxiv.org/abs/1706.03762.

    The example usage is:

    ..  code-block:: python

        context = multi_head_attention(query=decoder_state,
                                       key=enc_seq,
                                       value=enc_seq,
                                       key_proj_size=64,
                                       value_pro_size=64,
                                       head_num=8,
                                       attention_type='dot-product attention')

    :param name: A prefix attached to the name of each layer that defined inside
                 the multi_head_attention.
    :type name: basestring
    :param softmax_param_attr: The parameter attribute of sequence softmax
                               that is used to produce attention weight.
    :type softmax_param_attr: ParameterAttribute
    :param query: query is used to calculate attention weights over values at current step.
    :type query: LayerOutput
    :param key: key is used to calculate the attention weight of the corresponding value.
    :type key: LayerOutput
    :param value: value is the sequence to be attended.
    :type value: LayerOutput
    :param key_proj_size: The dimension of the linear projection performed on key and query.
    :type key_proj_size: int
    :param value_proj_size: The dimension of the linear projection performed on value.
    :type value_proj_size: int
    :param head_num: The number of attention heads.
    :type head_num: int
    :param attention_type: The type of the attention mechanism used in each attention
R
ranqiu 已提交
1549
                           heads. Now, we only support scaled dot-product attention and
R
ranqiu 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
                           additive attention.
    :type attention_type: basestring
    :return: The context vector.
    :rtype: LayerOutput
    """
    assert attention_type in ['dot-product attention', 'additive attention']

    with mixed_layer(
            size=key_proj_size * head_num,
            name='%s_query_proj' % name) as query_proj:
        query_proj += full_matrix_projection(query)
    query_proj = expand_layer(input=query_proj, expand_as=key)

    with mixed_layer(
            size=key_proj_size * head_num,
            name='%s_key_proj' % name) as key_proj:
        key_proj += full_matrix_projection(key)

    with mixed_layer(
            size=value_proj_size * head_num,
            name='%s_value_proj' % name) as value_proj:
        value_proj += full_matrix_projection(value)

    head_list = []
    for i in range(head_num):
        with mixed_layer(size=key_proj_size) as sub_query_proj:
            sub_query_proj += identity_projection(
R
ranqiu 已提交
1577
                query_proj, offset=key_proj_size * i, size=key_proj_size)
R
ranqiu 已提交
1578 1579 1580

        with mixed_layer(size=key_proj_size) as sub_key_proj:
            sub_key_proj += identity_projection(
R
ranqiu 已提交
1581
                key_proj, offset=key_proj_size * i, size=key_proj_size)
R
ranqiu 已提交
1582 1583 1584

        with mixed_layer(size=value_proj_size) as sub_value_proj:
            sub_value_proj += identity_projection(
R
ranqiu 已提交
1585
                value_proj, offset=value_proj_size * i, size=value_proj_size)
R
ranqiu 已提交
1586 1587

        if attention_type == 'dot-product attention':
R
ranqiu 已提交
1588 1589 1590
            m = dot_prod_layer(
                input1=sub_query_proj,
                input2=sub_key_proj,
R
ranqiu 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
                name='%s_dot-product_%d' % (name, i))
            m = slope_intercept_layer(
                input=m,
                slope=math.sqrt(1.0 / key_proj_size),
                name='%s_dot-product_scaling_%d' % (name, i))
        else:
            with mixed_layer(
                    size=key_proj_size,
                    act=TanhActivation(),
                    name='%s_combine_%d' % (name, i)) as m:
                m += identity_projection(sub_query_proj)
                m += identity_projection(sub_key_proj)

        attention_weight = fc_layer(
            input=m,
            size=1,
            act=SequenceSoftmaxActivation(),
            param_attr=softmax_param_attr,
            name="%s_softmax_%d" % (name, i),
            bias_attr=False)

        scaled = scaling_layer(
            weight=attention_weight,
            input=sub_value_proj,
            name='%s_scaling_%d' % (name, i))
        head = pooling_layer(
            input=scaled,
            pooling_type=SumPooling(),
            name="%s_pooling_%d" % (name, i))

        head_list.append(head)

R
ranqiu 已提交
1623
    attended = concat_layer(head_list)
R
ranqiu 已提交
1624 1625 1626 1627

    return attended


1628 1629 1630 1631 1632 1633 1634 1635
def inputs(layers, *args):
    """
    Declare the inputs of network. The order of input should be as same as
    the data provider's return order.

    :param layers: Input Layers.
    :type layers: list|tuple|LayerOutput.
    :return:
Z
zhangjinchao01 已提交
1636 1637
    """

1638 1639 1640 1641
    if isinstance(layers, LayerOutput) or isinstance(layers, basestring):
        layers = [layers]
    if len(args) != 0:
        layers.extend(args)
Z
zhangjinchao01 已提交
1642

Z
Zhaolong Xing 已提交
1643
    Inputs(*[l.name for l in layers])
1644 1645 1646 1647


def outputs(layers, *args):
    """
1648
    Declare the outputs of network. If user has not defined the inputs of
1649 1650 1651
    network, this method will calculate the input order by dfs travel.

    :param layers: Output layers.
Z
zhangjinchao01 已提交
1652 1653 1654 1655
    :type layers: list|tuple|LayerOutput
    :return:
    """

1656 1657
    traveled = set()

Z
zhangjinchao01 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
    def __dfs_travel__(layer,
                       predicate=lambda x: x.layer_type == LayerType.DATA):
        """
        DFS LRV Travel for output layer.

        The return order is define order for data_layer in this leaf node.

        :param layer:
        :type layer: LayerOutput
        :return:
        """
1669 1670 1671 1672 1673
        if layer in traveled:
            return []
        else:
            traveled.add(layer)

Z
zhangjinchao01 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        assert isinstance(layer, LayerOutput), "layer is %s" % (layer)
        retv = []
        if layer.parents is not None:
            for p in layer.parents:
                retv.extend(__dfs_travel__(p, predicate))

        if predicate(layer):
            retv.append(layer)
        return retv

    if isinstance(layers, LayerOutput):
        layers = [layers]

1687 1688 1689
    if len(args) != 0:
        layers.extend(args)

Z
zhangjinchao01 已提交
1690
    assert len(layers) > 0
1691 1692

    if HasInputsSet():  # input already set
Z
Zhaolong Xing 已提交
1693
        Outputs(*[l.name for l in layers])
1694 1695
        return  # just return outputs.

Z
zhangjinchao01 已提交
1696
    if len(layers) != 1:
1697
        logger.warning("`outputs` routine try to calculate network's"
Z
zhangjinchao01 已提交
1698 1699 1700 1701 1702 1703 1704
                       " inputs and outputs order. It might not work well."
                       "Please see follow log carefully.")
    inputs = []
    outputs_ = []
    for each_layer in layers:
        assert isinstance(each_layer, LayerOutput)
        inputs.extend(__dfs_travel__(each_layer))
Q
qijun 已提交
1705 1706 1707
        outputs_.extend(
            __dfs_travel__(each_layer,
                           lambda x: x.layer_type == LayerType.COST))
Z
zhangjinchao01 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

    # Currently, we got each leaf node's inputs order, output order.
    # We merge them together.

    final_inputs = []
    final_outputs = []

    for each_input in inputs:
        assert isinstance(each_input, LayerOutput)
        if each_input.name not in final_inputs:
            final_inputs.append(each_input.name)

    for each_output in outputs_:
        assert isinstance(each_output, LayerOutput)
        if each_output.name not in final_outputs:
            final_outputs.append(each_output.name)

Q
qijun 已提交
1725
    logger.info("".join(["The input order is [", ", ".join(final_inputs), "]"]))
1726 1727 1728 1729

    if len(final_outputs) == 0:
        final_outputs = map(lambda x: x.name, layers)

Q
qijun 已提交
1730 1731
    logger.info("".join(
        ["The output order is [", ", ".join(final_outputs), "]"]))
Z
zhangjinchao01 已提交
1732 1733

    Inputs(*final_inputs)
1734
    Outputs(*final_outputs)