ProcessGroupNCCL.cc 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
L
lilong12 已提交
16
#include "paddle/fluid/distributed/collective/Common.h"
17
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
B
Baibaifan 已提交
18 19 20
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

DECLARE_bool(nccl_blocking_wait);
DECLARE_bool(use_stream_safe_cuda_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<EventManager>& ncclEvents,                       // NOLINT
    std::vector<std::unique_ptr<CUDADeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
37 38
    ncclEvents[i].Record(*default_ctx);
    ncclEvents[i].Block(*dev_ctx[i]);
39 40 41 42 43
  }
}

std::shared_ptr<ProcessGroupNCCL::NCCLTask> ProcessGroupNCCL::CreateTask(
    std::vector<Place> places, int rank, CommType comm_type,
L
lilong12 已提交
44
    const std::vector<phi::DenseTensor>& inputs) {
45 46 47 48
  return std::make_shared<ProcessGroupNCCL::NCCLTask>(places, rank, comm_type,
                                                      inputs);
}

L
lilong12 已提交
49 50 51
ProcessGroupNCCL::NCCLTask::NCCLTask(
    const std::vector<Place>& places, int rank, CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
52 53 54 55 56 57 58 59
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  ncclComms_.resize(places.size());
}

ProcessGroupNCCL::NCCLTask::~NCCLTask() {}

void ProcessGroupNCCL::NCCLTask::SetOutputs(
L
lilong12 已提交
60 61
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
}

void ProcessGroupNCCL::NCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    default_ctx->WaitEvent(control_events_[i].GetRawCudaEvent());
  }
}

bool ProcessGroupNCCL::NCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

// TODO(sheniang03): Add timeout for wait, now timeout unused
bool ProcessGroupNCCL::NCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
  if (FLAGS_nccl_blocking_wait) {
    // NOTE(shenliang03): It will block host for sync
    while (!IsCompleted()) {
      std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
    }
  }
B
Baibaifan 已提交
91 92 93 94 95 96 97 98

  if (!barrierTensors_.empty()) {
    // If we use the work to do barrier, we should block cpu
    for (auto& place : places_) {
      platform::CUDADeviceGuard gpuGuard(place);
      PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
    }
  }
99 100 101 102 103 104
  return true;
}

// Same as Wait
void ProcessGroupNCCL::NCCLTask::Synchronize() { Wait(kWaitTimeout); }

105
ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
L
lilong12 已提交
106 107
                                   int rank, int size, int gid)
    : ProcessGroup(rank, size, gid), store_(store) {}
108 109 110

void ProcessGroupNCCL::BroadcastUniqueNCCLID(
    std::vector<ncclUniqueId>& nccl_ids) {  // NOLINT
111 112 113 114 115 116 117 118 119 120 121 122 123 124
  if (rank_ == 0) {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(i);
      auto nccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&nccl_ids[i]),
          reinterpret_cast<uint8_t*>(&nccl_ids[i]) + NCCL_UNIQUE_ID_BYTES);
      store_->set(key, nccl_id);
    }
  } else {
    for (size_t i = 0; i < nccl_ids.size(); i++) {
      auto key = "ProcessGroupNCCL/nccl_ids/" + std::to_string(i);
      auto ret = store_->get(key);
      std::memcpy(&nccl_ids[i], ret.data(), ret.size());
    }
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  }
}

// create NCCLManager cache for places_key
void ProcessGroupNCCL::CreateNCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
  PADDLE_ENFORCE_EQ(places_key.empty(), false,
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the NCCL Communicator since "
                        "the GPU place are not known"));

  std::vector<std::shared_ptr<NCCLCommManager>> nccl_comms;
  nccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<ncclUniqueId> nccl_ids;
  nccl_ids.resize(1);
  auto& nccl_id = nccl_ids.front();

B
Baibaifan 已提交
144 145 146 147
  for (auto& place : places) {
    used_place_ids_.insert(place.GetDeviceId());
  }

148 149 150 151 152
  if (rank_ == 0) {
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetUniqueId(&nccl_id));
  }
  BroadcastUniqueNCCLID(nccl_ids);

153 154
  VLOG(3) << "init nccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
          << ", nccl uniqueid: " << SerializeNCCLUniqueId(nccl_id);

  std::vector<std::unique_ptr<CUDADeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());

  for (size_t i = 0; i < places.size(); ++i) {
    platform::CUDADeviceGuard guard(places[i]);
    nccl_comms[i] = NCCLCommManager::Create(GetSize(), GetRank(), nccl_id);
    dev_ctx[i].reset(new CUDADeviceContext(places[i]));
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());

  std::vector<EventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_ncclcomm_.emplace(places_key, std::move(nccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Collective(
L
lilong12 已提交
181 182
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, Fn fn, CommType op_type) {
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
L
lilong12 已提交
206
      memory::RecordStream(inputs[i].Holder(),
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < inputs.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(inputs[i], outputs[i], nccl_comms[i]->GetNcclComm(), nccl_stream);
    }
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
template <typename Fn>
void ProcessGroupNCCL::Collective(const phi::DenseTensor* in,
                                  phi::DenseTensor* out, Fn fn,
                                  CommType op_type) {
  std::vector<Place> places;
  places.push_back(in->place());
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    cuda_guard.SetDevice(places[0]);
    memory::RecordStream(in->Holder(), places_to_ctx_[key][0]->stream());
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    cuda_guard.SetDevice(places[0]);
    const auto& nccl_stream = places_to_ctx_[key][0]->stream();
    fn(in, out, nccl_comms[0]->GetNcclComm(), nccl_stream);
  }

  cuda_guard.SetDevice(places[0]);
}

B
Baibaifan 已提交
264 265
template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::PointToPoint(
L
lilong12 已提交
266 267
    std::vector<phi::DenseTensor>& tensors, Fn fn, int dst_rank,
    CommType op_type) {
B
Baibaifan 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  const auto places = GetPlaceList(tensors);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_ncclcomm_.find(key) == places_to_ncclcomm_.end()) {
      CreateNCCLManagerCache(key, places);
    }
  }

  auto& nccl_comms = places_to_ncclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, tensors);

  // construct uninitialize guard for device
  platform::CUDADeviceGuard cuda_guard;

  if (FLAGS_use_stream_safe_cuda_allocator) {
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
L
lilong12 已提交
290
      memory::RecordStream(tensors[i].Holder(),
B
Baibaifan 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
                           places_to_ctx_[key][i]->stream());
    }
  }

  {
    platform::NCCLGroupGuard nccl_guard;
    for (size_t i = 0; i < tensors.size(); ++i) {
      cuda_guard.SetDevice(places[i]);
      const auto& nccl_stream = places_to_ctx_[key][i]->stream();
      fn(tensors[i], nccl_comms[i]->GetNcclComm(), nccl_stream, dst_rank);
    }
  }

  for (size_t i = 0; i < tensors.size(); ++i) {
    cuda_guard.SetDevice(places[i]);
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

311
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
L
lilong12 已提交
312 313
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const AllreduceOptions& opts) {
314
  PADDLE_ENFORCE_EQ(
L
lilong12 已提交
315
      CheckTensorsInCudaPlace(in_tensors), true,
316
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
L
lilong12 已提交
317 318 319 320 321 322 323 324 325
  return Collective(in_tensors, out_tensors,
                    [&](const phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      return platform::dynload::ncclAllReduce(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.type()),
                          ToNCCLRedType(opts.reduce_op), comm, stream);
                    },
                    CommType::ALLREDUCE);
326 327 328
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
L
lilong12 已提交
329 330
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const BroadcastOptions& opts) {
331
  PADDLE_ENFORCE_EQ(
L
lilong12 已提交
332
      CheckTensorsInCudaPlace(in_tensors), true,
333 334
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));

L
lilong12 已提交
335 336 337 338 339 340 341 342 343 344 345
  return Collective(in_tensors, out_tensors,
                    [&](phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      const auto root = opts.source_rank * in_tensors.size() +
                                        opts.source_root;
                      return platform::dynload::ncclBroadcast(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.type()), root, comm,
                          stream);
                    },
                    CommType::BROADCAST);
346 347
}

B
Baibaifan 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Barrier(
    const BarrierOptions& opts) {
  std::vector<phi::GPUPlace> places;

  if (!opts.place_ids.empty()) {
    for (auto place_id : opts.place_ids) {
      places.emplace_back(place_id);
    }
  } else if (!used_place_ids_.empty()) {
    for (auto place_id : used_place_ids_) {
      places.emplace_back(place_id);
    }
  } else {
    auto numGPUs = GetSize();
    int place_id = static_cast<int>(rank_ % numGPUs);
    places.emplace_back(place_id);
  }

L
lilong12 已提交
366
  std::vector<phi::DenseTensor> barrierTensors;
B
Baibaifan 已提交
367 368 369 370 371
  barrierTensors.reserve(places.size());

  platform::CUDADeviceGuard gpuGuard;
  for (auto& place : places) {
    gpuGuard.SetDeviceIndex(place.GetDeviceId());
372
    auto dt = full({1}, 0, phi::DataType::FLOAT32, phi::GPUPlace());
L
lilong12 已提交
373 374
    barrierTensors.push_back(
        *std::dynamic_pointer_cast<phi::DenseTensor>(dt.impl()));
B
Baibaifan 已提交
375
  }
L
lilong12 已提交
376
  auto task = ProcessGroupNCCL::AllReduce(barrierTensors, barrierTensors);
B
Baibaifan 已提交
377 378 379 380 381
  auto nccl_task = dynamic_cast<ProcessGroupNCCL::NCCLTask*>(task.get());
  nccl_task->barrierTensors_ = std::move(barrierTensors);
  return task;
}

L
lilong12 已提交
382 383
void CheckTensorsInDifferentDevices(
    const std::vector<phi::DenseTensor>& tensors, const size_t num_devices) {
B
Baibaifan 已提交
384 385 386 387 388 389 390 391 392 393 394
  PADDLE_ENFORCE_EQ(
      tensors.size() == 0, false,
      platform::errors::InvalidArgument("Tensor list must be nonempty."));
  PADDLE_ENFORCE_LE(
      tensors.size(), num_devices,
      platform::errors::InvalidArgument(
          "Tensor list mustn't be larger than the number of available GPUs."));

  std::set<Place> used_devices;

  for (const auto& t : tensors) {
L
lilong12 已提交
395
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(t.place()), true,
B
Baibaifan 已提交
396 397 398
                      platform::errors::InvalidArgument(
                          "Tensors must be CUDA and dense tensor."));

399
    const auto inserted = used_devices.insert(t.place()).second;
B
Baibaifan 已提交
400 401 402 403 404 405 406
    PADDLE_ENFORCE_EQ(inserted, true,
                      platform::errors::InvalidArgument(
                          "Tensors must be on distinct GPU devices."));
  }
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
L
lilong12 已提交
407
    std::vector<phi::DenseTensor>& tensors, int dst_rank) {
B
Baibaifan 已提交
408 409
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

L
lilong12 已提交
410 411 412 413 414 415 416 417 418
  auto task = PointToPoint(tensors,
                           [&](phi::DenseTensor& input, ncclComm_t comm,
                               const gpuStream_t& stream, int dst_rank) {
                             return platform::dynload::ncclSend(
                                 input.data(), input.numel(),
                                 platform::ToNCCLDataType(input.dtype()),
                                 dst_rank, comm, stream);
                           },
                           dst_rank, CommType::SEND);
B
Baibaifan 已提交
419 420 421 422
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
L
lilong12 已提交
423
    std::vector<phi::DenseTensor>& tensors, int src_rank) {
B
Baibaifan 已提交
424 425
  CheckTensorsInDifferentDevices(tensors, static_cast<size_t>(GetSize()));

L
lilong12 已提交
426 427 428 429 430 431 432 433 434
  auto task = PointToPoint(tensors,
                           [&](phi::DenseTensor& output, ncclComm_t comm,
                               const gpuStream_t& stream, int src_rank) {
                             return platform::dynload::ncclRecv(
                                 output.data(), output.numel(),
                                 platform::ToNCCLDataType(output.dtype()),
                                 src_rank, comm, stream);
                           },
                           src_rank, CommType::RECV);
B
Baibaifan 已提交
435 436 437
  return task;
}

438
std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
L
lilong12 已提交
439 440
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
441 442 443 444 445 446
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All outputs should be in CudaPlace."));
L
lilong12 已提交
447 448 449 450 451 452 453 454 455
  return Collective(in_tensors, out_tensors,
                    [&](const phi::DenseTensor& input, phi::DenseTensor& output,
                        ncclComm_t comm, const gpuStream_t& stream) {
                      return platform::dynload::ncclAllGather(
                          input.data(), output.data(), input.numel(),
                          platform::ToNCCLDataType(input.dtype()), comm,
                          stream);
                    },
                    CommType::ALLGATHER);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

void* GetPointerByOffset(void* raw_pointer, size_t offset,
                         experimental::DataType type) {
  if (type == experimental::DataType::FLOAT32) {
    return reinterpret_cast<void*>(reinterpret_cast<float*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT64) {
    return reinterpret_cast<void*>(reinterpret_cast<double*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT32) {
    return reinterpret_cast<void*>(reinterpret_cast<int32_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::INT64) {
    return reinterpret_cast<void*>(reinterpret_cast<int64_t*>(raw_pointer) +
                                   offset);
  } else if (type == experimental::DataType::FLOAT16) {
    return reinterpret_cast<void*>(reinterpret_cast<int16_t*>(raw_pointer) +
                                   offset);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "This datatype in nccl is not supported."));
  }
L
lilong12 已提交
479
  return nullptr;
480 481 482
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
L
lilong12 已提交
483 484
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
485 486 487 488 489 490 491 492
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
L
lilong12 已提交
493
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
494 495 496 497 498
          const gpuStream_t& stream) {
        size_t offset = 0;
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
        for (auto i = 0; i < size_; i++) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
L
lilong12 已提交
499 500 501
              GetPointerByOffset(input.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
502
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
L
lilong12 已提交
503 504 505 506
              GetPointerByOffset(output.data(), offset, input.dtype()),
              input.numel() / size_, platform::ToNCCLDataType(input.dtype()), i,
              comm, stream));
          offset += input.numel() / size_;
507 508 509 510 511 512 513
        }
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
      },
      CommType::ALLREDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
L
lilong12 已提交
514 515
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ReduceOptions& opts) {
516
  PADDLE_ENFORCE_EQ(
L
lilong12 已提交
517
      CheckTensorsInCudaPlace(in_tensors), true,
518 519
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
L
lilong12 已提交
520 521 522
      in_tensors, out_tensors,
      [&](const phi::DenseTensor& input, phi::DenseTensor& output,
          ncclComm_t comm, const gpuStream_t& stream) {
523
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduce(
L
lilong12 已提交
524 525
            input.data(), output.data(), input.numel(),
            platform::ToNCCLDataType(input.dtype()),
526 527 528 529 530 531
            ToNCCLRedType(opts.reduce_op), opts.root_rank, comm, stream));
      },
      CommType::REDUCE);
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
L
lilong12 已提交
532 533
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ScatterOptions& opts) {
534 535 536 537 538 539 540 541
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(in_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  PADDLE_ENFORCE_EQ(
      CheckTensorsInCudaPlace(out_tensors), true,
      platform::errors::InvalidArgument("All inputs should be in CudaPlace."));
  return Collective(
      in_tensors, out_tensors,
L
lilong12 已提交
542
      [&](phi::DenseTensor& input, phi::DenseTensor& output, ncclComm_t comm,
543 544 545 546 547 548
          const gpuStream_t& stream) {
        size_t offset = 0;
        if (rank_ == opts.root_rank) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupStart());
          for (auto i = 0; i < size_; i++) {
            PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclSend(
L
lilong12 已提交
549 550 551 552
                GetPointerByOffset(input.data(), offset, input.dtype()),
                input.numel() / size_, platform::ToNCCLDataType(input.dtype()),
                i, comm, stream));
            offset += input.numel() / size_;
553 554
          }
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
L
lilong12 已提交
555 556
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
557 558 559 560
              stream));
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGroupEnd());
        } else {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRecv(
L
lilong12 已提交
561 562
              output.data(), input.numel() / size_,
              platform::ToNCCLDataType(input.dtype()), opts.root_rank, comm,
563 564 565 566 567 568
              stream));
        }
      },
      CommType::SCATTER);
}

569 570
}  //  namespace distributed
}  //  namespace paddle