fleet_wrapper.cc 24.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
30
#include <algorithm>
X
xujiaqi01 已提交
31
#include <utility>
32
#include "paddle/fluid/framework/data_feed.h"
33
#include "paddle/fluid/framework/op_registry.h"
34
#include "paddle/fluid/framework/scope.h"
35 36 37 38 39 40

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
41 42
bool FleetWrapper::is_initialized_ = false;

43
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
44 45 46
template <class AR>
paddle::ps::Archive<AR>& operator<<(paddle::ps::Archive<AR>& ar,
                                    const MultiSlotType& ins) {
47 48 49 50
  ar << ins.GetType();
  ar << ins.GetOffset();
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
X
xujiaqi01 已提交
51
  return ar;
52 53
}

D
dongdaxiang 已提交
54 55 56
template <class AR>
paddle::ps::Archive<AR>& operator>>(paddle::ps::Archive<AR>& ar,
                                    MultiSlotType& ins) {
57 58 59 60
  ar >> ins.MutableType();
  ar >> ins.MutableOffset();
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
X
xujiaqi01 已提交
61
  return ar;
62 63 64
}
#endif

65 66 67
#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
68

69 70 71 72 73 74 75 76
void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

77 78 79
void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
80
    VLOG(3) << "Going to init server";
81 82 83 84 85
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
86
    VLOG(3) << "Server can be initialized only once";
87 88 89 90 91 92 93 94 95
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
96
    VLOG(3) << "Going to init worker";
97 98 99 100 101 102 103
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
104
    VLOG(3) << "Worker can be initialized only once";
105 106 107 108 109 110
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
111
  VLOG(3) << "Going to stop server";
112 113 114 115 116 117
  pslib_ptr_->stop_server();
#endif
}

uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
118
  VLOG(3) << "Going to run server";
119 120 121 122 123 124 125 126 127
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
128
  VLOG(3) << "Going to gather server ips";
129 130 131 132 133
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

D
dongdaxiang 已提交
134
void FleetWrapper::GatherClients(const std::vector<uint64_t>& host_sign_list) {
X
xjqbest 已提交
135 136 137
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to gather client ips";
  size_t len = host_sign_list.size();
D
dongdaxiang 已提交
138
  pslib_ptr_->gather_clients(const_cast<uint64_t*>(host_sign_list.data()), len);
X
xjqbest 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152
#endif
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to get client info";
  return pslib_ptr_->get_client_info();
#endif
  return std::vector<uint64_t>();
}

void FleetWrapper::CreateClient2ClientConnection() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to create client2client connection";
153 154 155
  pslib_ptr_->create_client2client_connection(client2client_request_timeout_ms_,
                                              client2client_connect_timeout_ms_,
                                              client2client_max_retry_);
X
xjqbest 已提交
156 157 158
#endif
}

159 160 161 162 163 164 165 166 167 168 169 170
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
171 172 173
    if (var == nullptr) {
      continue;
    }
174
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
175
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
176 177 178 179 180 181 182 183 184
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
D
dongdaxiang 已提交
185 186 187 188 189 190 191 192 193 194 195
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  auto status = pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
  pull_sparse_status.push_back(std::move(status));
196 197 198 199 200
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
201
      sleep(sleep_seconds_before_fail_exit_);
202 203 204 205 206 207 208 209 210 211 212
      exit(-1);
    }
  }
#endif
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
213 214
  auto& regions = _regions[tid];
  regions.clear();
215 216 217
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
218 219 220
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
221
    regions[i] = std::move(reg);
222 223 224 225 226 227 228 229 230 231 232
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
233 234
  auto& regions = _regions[tid];
  regions.clear();
235 236 237 238 239 240 241 242 243 244 245 246 247 248
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

249
void FleetWrapper::PushDenseParamSync(
D
dongdaxiang 已提交
250
    const Scope& scope, const uint64_t table_id,
251 252 253 254 255 256
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  auto place = platform::CPUPlace();
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
X
xjqbest 已提交
257
    CHECK(var != nullptr) << "var[" << t << "] not found";
258
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
259
    float* g = tensor->mutable_data<float>(place);
260 261 262
    paddle::ps::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
263 264 265 266 267
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
268 269 270
#endif
}

D
dongdaxiang 已提交
271 272 273 274
void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

275 276 277
void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
278 279
    std::vector<::std::future<int32_t>>* push_sparse_status,
    float scale_datanorm, int batch_size) {
280 281 282 283 284 285 286
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
287 288 289 290 291 292 293 294 295 296 297 298 299 300
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
  push_sparse_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
316
    std::vector<::std::future<int32_t>>* push_sparse_status,
T
Thunderbrook 已提交
317
    const int batch_size, const bool use_cvm, const bool dump_slot) {
318 319
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
T
Thunderbrook 已提交
320
  int slot_offset = 0;
321
  int grad_dim = emb_dim;
T
Thunderbrook 已提交
322 323
  int show_index = 0;
  int click_index = 1;
324 325 326 327
  if (use_cvm) {
    offset = 0;
    grad_dim = emb_dim - 2;
  }
T
Thunderbrook 已提交
328 329 330 331 332
  if (dump_slot) {
    slot_offset = 1;
    show_index = 1;
    click_index = 2;
  }
333
  CHECK_GE(grad_dim, 0);
334 335 336

  push_values->resize(fea_keys.size() + 1);
  for (auto& t : *push_values) {
T
Thunderbrook 已提交
337
    t.resize(emb_dim + offset + slot_offset);
338
  }
339 340 341
  uint64_t fea_idx = 0u;
  for (size_t i = 0; i < sparse_key_names.size(); ++i) {
    Variable* var = scope.FindVar(sparse_key_names[i]);
342 343 344
    if (var == nullptr) {
      continue;
    }
345
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
346 347
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
348 349 350 351
      exit(-1);
    }
    int len = tensor->numel();
    int64_t* ids = tensor->data<int64_t>();
T
Thunderbrook 已提交
352 353 354 355
    int slot = 0;
    if (dump_slot) {
      slot = boost::lexical_cast<int>(sparse_key_names[i]);
    }
356
    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
357 358 359
    if (g_var == nullptr) {
      continue;
    }
360 361 362 363
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
364
    }
365 366
    float* g = g_tensor->data<float>();

367 368 369 370 371 372 373
    if (scale_sparse_gradient_with_batch_size_ && grad_dim > 0) {
      int dim = emb_dim + offset;
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / dim, dim);
      g_mat.rightCols(grad_dim) *= batch_size;
    }
374 375 376 377 378
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
379 380
      CHECK(fea_idx < (*push_values).size());
      CHECK(fea_idx < fea_labels.size());
T
Thunderbrook 已提交
381

382
      if (use_cvm) {
T
Thunderbrook 已提交
383
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
384 385
               sizeof(float) * emb_dim);
      } else {
T
Thunderbrook 已提交
386
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
387
               sizeof(float) * emb_dim);
T
Thunderbrook 已提交
388 389 390 391 392 393
        (*push_values)[fea_idx][show_index] = 1.0f;
        (*push_values)[fea_idx][click_index] =
            static_cast<float>(fea_labels[fea_idx]);
      }
      if (dump_slot) {
        (*push_values)[fea_idx][0] = static_cast<float>(slot);
394
      }
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
      g += emb_dim;
      fea_idx++;
    }
  }
  CHECK(fea_idx == fea_keys.size()) << "fea_idx: " << fea_idx
                                    << "features size: " << fea_keys.size();
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < fea_keys.size(); ++i) {
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
      table_id, fea_keys.data(), (const float**)push_g_vec.data(),
      fea_keys.size());
  push_sparse_status->push_back(std::move(status));

#endif
}

413 414 415 416
void FleetWrapper::LoadFromPaddleModel(Scope& scope, const uint64_t table_id,
                                       std::vector<std::string> var_list,
                                       std::string model_path,
                                       std::string model_proto_file,
417
                                       std::vector<std::string> table_var_list,
418
                                       bool load_combine) {
419
#ifdef PADDLE_WITH_PSLIB
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
  // load ProgramDesc from model file
  auto read_proto_func = [](const std::string& filename) -> ProgramDesc {
    std::string contents;
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
    fin.seekg(0, std::ios::end);
    contents.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&contents[0], contents.size());
    fin.close();
    ProgramDesc program_desc(contents);
    return program_desc;
  };
  const ProgramDesc old_program = read_proto_func(model_proto_file);
  Scope* old_scope = new Scope();
  auto& old_block = old_program.Block(0);
  auto place = platform::CPUPlace();
  std::vector<std::string> old_param_list;

  for (auto& t : var_list) {
    VarDesc* old_var_desc = old_block.FindVar(t);
    if (old_var_desc == nullptr) {
      continue;
    }
    // init variable in scope
    Variable* old_var = old_scope->Var(old_var_desc->Name());
    InitializeVariable(old_var, old_var_desc->GetType());
    old_param_list.push_back(t);
    if (load_combine) {
      continue;
    }
    // load variable from model
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path + "/" + old_var_desc->Name()});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load", {}, {{"Out", {old_var_desc->Name()}}}, attrs);
    load_op->Run(*old_scope, place);
  }

  if (load_combine) {
    std::sort(old_param_list.begin(), old_param_list.end());
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load_combine", {}, {{"Out", old_param_list}}, attrs);
    load_op->Run(*old_scope, place);
  }

  for (auto& t : old_param_list) {
    Variable* old_var = old_scope->Var(t);
    // old model data, here we assume data type is float
    LoDTensor* old_tensor = old_var->GetMutable<LoDTensor>();
    float* old_data = old_tensor->data<float>();
    // new model data, here we assume data type is float
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* data = tensor->data<float>();
    // copy from old data to new data
    if (old_tensor->numel() > tensor->numel()) {
      memcpy(data, old_data, tensor->numel() * sizeof(float));
    } else {
      memcpy(data, old_data, old_tensor->numel() * sizeof(float));
    }
  }
  delete old_scope;
485 486
  PushDenseParamSync(scope, table_id, table_var_list);
#endif
487 488
}

489 490 491 492 493 494
void FleetWrapper::LoadModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->load(path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
495
    sleep(sleep_seconds_before_fail_exit_);
496 497 498 499 500 501 502
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret =
      pslib_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

518 519 520 521 522 523 524
void FleetWrapper::SaveModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save(path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
525
    sleep(sleep_seconds_before_fail_exit_);
526 527 528 529 530 531 532
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::SaveModel does nothing when no pslib";
#endif
}

533 534 535 536 537 538 539 540 541
double FleetWrapper::GetCacheThreshold() {
#ifdef PADDLE_WITH_PSLIB
  double cache_threshold = 0.0;
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
  ret = pslib_ptr_->_worker_ptr->get_cache_threshold(0, cache_threshold);
  ret.wait();
  if (cache_threshold < 0) {
    LOG(ERROR) << "get cache threshold failed";
542
    sleep(sleep_seconds_before_fail_exit_);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    exit(-1);
  }
  return cache_threshold;
#else
  VLOG(0) << "FleetWrapper::GetCacheThreshold does nothing when no pslib";
  return 0.0;
#endif
}

void FleetWrapper::CacheShuffle(int table_id, const std::string& path,
                                const int mode, const double cache_threshold) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->cache_shuffle(
      0, path, std::to_string(mode), std::to_string(cache_threshold));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "cache shuffle failed";
561
    sleep(sleep_seconds_before_fail_exit_);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::CacheShuffle does nothing when no pslib";
#endif
}

int32_t FleetWrapper::SaveCache(int table_id, const std::string& path,
                                const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save_cache(0, path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "table save cache failed";
577
    sleep(sleep_seconds_before_fail_exit_);
578 579 580 581 582 583 584 585 586
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::SaveCache does nothing when no pslib";
  return -1;
#endif
}

587 588 589 590 591 592 593 594 595
void FleetWrapper::ShrinkSparseTable(int table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->shrink(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

596 597 598 599 600 601 602 603 604
void FleetWrapper::ClearModel() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->clear();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ClearModel does nothing when no pslib";
#endif
}

605 606
void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
607
                                    float decay, int emb_dim) {
608 609 610 611 612 613
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
614
      VLOG(0) << "prepare shrink dense batch_sum";
615 616
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
617 618 619 620 621 622 623 624 625 626 627 628 629

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
      size_name.replace(size_name.find("batch_sum"), size_name.length(),
                        "batch_size");
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    LOG(FATAL) << "push shrink dense param failed, status[" << status << "]";
647
    sleep(sleep_seconds_before_fail_exit_);
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

void FleetWrapper::ClientFlush() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ServerFlush does nothing when no pslib";
#endif
}

664 665
int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
666
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
667 668 669
  VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  VLOG(3) << "pslib_ptr_=" << pslib_ptr_;
  VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr;
670 671
  return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type,
                                                                    handler);
672 673 674 675
#else
  VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler"
          << " does nothing when no pslib";
#endif
X
xujiaqi01 已提交
676
  return 0;
677 678
}

679 680
std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
681
#ifdef PADDLE_WITH_PSLIB
682 683
  return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id,
                                                         msg);
684 685 686 687
#else
  VLOG(0) << "FleetWrapper::SendClientToClientMsg"
          << " does nothing when no pslib";
#endif
688
  return std::future<int32_t>();
X
xujiaqi01 已提交
689 690
}

D
dongdaxiang 已提交
691
template <typename T>
692
void FleetWrapper::Serialize(const std::vector<T*>& t, std::string* str) {
693 694
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::BinaryArchive ar;
695 696 697
  for (size_t i = 0; i < t.size(); ++i) {
    ar << *(t[i]);
  }
X
xujiaqi01 已提交
698
  *str = std::string(ar.buffer(), ar.length());
699
#else
700
  VLOG(0) << "FleetWrapper::Serialize does nothing when no pslib";
701 702 703
#endif
}

D
dongdaxiang 已提交
704
template <typename T>
705
void FleetWrapper::Deserialize(std::vector<T>* t, const std::string& str) {
706
#ifdef PADDLE_WITH_PSLIB
707 708 709
  if (str.length() == 0) {
    return;
  }
710 711
  paddle::ps::BinaryArchive ar;
  ar.set_read_buffer(const_cast<char*>(str.c_str()), str.length(), nullptr);
712 713 714 715 716 717 718 719
  if (ar.cursor() == ar.finish()) {
    return;
  }
  while (ar.cursor() < ar.finish()) {
    t->push_back(ar.get<T>());
  }
  CHECK(ar.cursor() == ar.finish());
  VLOG(3) << "Deserialize size " << t->size();
720
#else
721
  VLOG(0) << "FleetWrapper::Deserialize does nothing when no pslib";
722 723 724
#endif
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;
#ifdef PADDLE_WITH_PSLIB
    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
#endif
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

743
template void FleetWrapper::Serialize<std::vector<MultiSlotType>>(
744 745 746
    const std::vector<std::vector<MultiSlotType>*>&, std::string*);
template void FleetWrapper::Deserialize<std::vector<MultiSlotType>>(
    std::vector<std::vector<MultiSlotType>>*, const std::string&);
747

748 749
}  // end namespace framework
}  // end namespace paddle