fleet_wrapper.cc 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
30
#include <algorithm>
X
xujiaqi01 已提交
31
#include <utility>
32
#include "paddle/fluid/framework/data_feed.h"
33
#include "paddle/fluid/framework/op_registry.h"
34
#include "paddle/fluid/framework/scope.h"
35 36 37 38 39 40

namespace paddle {
namespace framework {

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
41 42
bool FleetWrapper::is_initialized_ = false;

43
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
44 45 46
template <class AR>
paddle::ps::Archive<AR>& operator<<(paddle::ps::Archive<AR>& ar,
                                    const MultiSlotType& ins) {
47 48 49 50
  ar << ins.GetType();
  ar << ins.GetOffset();
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
X
xujiaqi01 已提交
51
  return ar;
52 53
}

D
dongdaxiang 已提交
54 55 56
template <class AR>
paddle::ps::Archive<AR>& operator>>(paddle::ps::Archive<AR>& ar,
                                    MultiSlotType& ins) {
57 58 59 60
  ar >> ins.MutableType();
  ar >> ins.MutableOffset();
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
X
xujiaqi01 已提交
61
  return ar;
62 63 64
}
#endif

65 66 67
#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> FleetWrapper::pslib_ptr_ = NULL;
#endif
68 69 70 71

void FleetWrapper::InitServer(const std::string& dist_desc, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
72
    VLOG(3) << "Going to init server";
73 74 75 76 77
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_server(dist_desc, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
78
    VLOG(3) << "Server can be initialized only once";
79 80 81 82 83 84 85 86 87
  }
#endif
}

void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<uint64_t>& host_sign_list,
                              int node_num, int index) {
#ifdef PADDLE_WITH_PSLIB
  if (!is_initialized_) {
D
dongdaxiang 已提交
88
    VLOG(3) << "Going to init worker";
89 90 91 92 93 94 95
    pslib_ptr_ = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    pslib_ptr_->init_worker(dist_desc,
                            const_cast<uint64_t*>(host_sign_list.data()),
                            node_num, index);
    is_initialized_ = true;
  } else {
D
dongdaxiang 已提交
96
    VLOG(3) << "Worker can be initialized only once";
97 98 99 100 101 102
  }
#endif
}

void FleetWrapper::StopServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
103
  VLOG(3) << "Going to stop server";
104 105 106 107 108 109
  pslib_ptr_->stop_server();
#endif
}

uint64_t FleetWrapper::RunServer() {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
110
  VLOG(3) << "Going to run server";
111 112 113 114 115 116 117 118 119
  return pslib_ptr_->run_server();
#else
  return 0;
#endif
}

void FleetWrapper::GatherServers(const std::vector<uint64_t>& host_sign_list,
                                 int node_num) {
#ifdef PADDLE_WITH_PSLIB
D
dongdaxiang 已提交
120
  VLOG(3) << "Going to gather server ips";
121 122 123 124 125
  pslib_ptr_->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
                             node_num);
#endif
}

D
dongdaxiang 已提交
126
void FleetWrapper::GatherClients(const std::vector<uint64_t>& host_sign_list) {
X
xjqbest 已提交
127 128 129
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to gather client ips";
  size_t len = host_sign_list.size();
D
dongdaxiang 已提交
130
  pslib_ptr_->gather_clients(const_cast<uint64_t*>(host_sign_list.data()), len);
X
xjqbest 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
#endif
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to get client info";
  return pslib_ptr_->get_client_info();
#endif
  return std::vector<uint64_t>();
}

void FleetWrapper::CreateClient2ClientConnection() {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to create client2client connection";
  pslib_ptr_->create_client2client_connection();
#endif
}

149 150 151 152 153 154 155 156 157 158 159 160
void FleetWrapper::PullSparseVarsSync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names, std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values, int fea_value_dim) {
#ifdef PADDLE_WITH_PSLIB
  std::vector<::std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
161 162 163
    if (var == nullptr) {
      continue;
    }
164
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
165
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
166 167 168 169 170 171 172 173 174
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
D
dongdaxiang 已提交
175 176 177 178 179 180 181 182 183 184 185
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
  auto status = pslib_ptr_->_worker_ptr->pull_sparse(
      pull_result_ptr.data(), table_id, fea_keys->data(), fea_keys->size());
  pull_sparse_status.push_back(std::move(status));
186 187 188 189 190
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
191
      sleep(sleep_seconds_before_fail_exit_);
192 193 194 195 196 197 198 199 200 201 202
      exit(-1);
    }
  }
#endif
}

void FleetWrapper::PullDenseVarsAsync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names,
    std::vector<::std::future<int32_t>>* pull_dense_status) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
203 204
  auto& regions = _regions[tid];
  regions.clear();
205 206 207
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    Variable* var = scope.FindVar(var_names[i]);
208 209 210
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
211
    regions[i] = std::move(reg);
212 213 214 215 216 217 218 219 220 221 222
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  pull_dense_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PullDenseVarsSync(
    const Scope& scope, const uint64_t tid,
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
223 224
  auto& regions = _regions[tid];
  regions.clear();
225 226 227 228 229 230 231 232 233 234 235 236 237 238
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
  auto status =
      pslib_ptr_->_worker_ptr->pull_dense(regions.data(), regions.size(), tid);
  status.wait();
#endif
}

239
void FleetWrapper::PushDenseParamSync(
D
dongdaxiang 已提交
240
    const Scope& scope, const uint64_t table_id,
241 242 243 244 245 246
    const std::vector<std::string>& var_names) {
#ifdef PADDLE_WITH_PSLIB
  auto place = platform::CPUPlace();
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
X
xjqbest 已提交
247
    CHECK(var != nullptr) << "var[" << t << "] not found";
248
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
249
    float* g = tensor->mutable_data<float>(place);
250 251 252
    paddle::ps::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
  }
253 254 255 256 257
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
258 259 260
#endif
}

D
dongdaxiang 已提交
261 262 263 264
void FleetWrapper::PushDenseVarsSync(
    Scope* scope, const uint64_t table_id,
    const std::vector<std::string>& var_names) {}

265 266 267
void FleetWrapper::PushDenseVarsAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<std::string>& var_names,
268 269
    std::vector<::std::future<int32_t>>* push_sparse_status,
    float scale_datanorm, int batch_size) {
270 271 272 273 274 275 276
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
277 278 279 280 281 282 283 284 285 286 287 288 289 290
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
  auto status = pslib_ptr_->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
  push_sparse_status->push_back(std::move(status));
#endif
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
    const Scope& scope, const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys, const std::vector<float>& fea_labels,
    const std::vector<std::string>& sparse_key_names,
    const std::vector<std::string>& sparse_grad_names, const int emb_dim,
    std::vector<std::vector<float>>* push_values,
306
    std::vector<::std::future<int32_t>>* push_sparse_status,
T
Thunderbrook 已提交
307
    const int batch_size, const bool use_cvm, const bool dump_slot) {
308 309
#ifdef PADDLE_WITH_PSLIB
  int offset = 2;
T
Thunderbrook 已提交
310
  int slot_offset = 0;
311
  int grad_dim = emb_dim;
T
Thunderbrook 已提交
312 313
  int show_index = 0;
  int click_index = 1;
314 315 316 317
  if (use_cvm) {
    offset = 0;
    grad_dim = emb_dim - 2;
  }
T
Thunderbrook 已提交
318 319 320 321 322
  if (dump_slot) {
    slot_offset = 1;
    show_index = 1;
    click_index = 2;
  }
323
  CHECK_GE(grad_dim, 0);
324 325 326

  push_values->resize(fea_keys.size() + 1);
  for (auto& t : *push_values) {
T
Thunderbrook 已提交
327
    t.resize(emb_dim + offset + slot_offset);
328
  }
329 330 331
  uint64_t fea_idx = 0u;
  for (size_t i = 0; i < sparse_key_names.size(); ++i) {
    Variable* var = scope.FindVar(sparse_key_names[i]);
332 333 334
    if (var == nullptr) {
      continue;
    }
335
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
336 337
    if (tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
338 339 340 341
      exit(-1);
    }
    int len = tensor->numel();
    int64_t* ids = tensor->data<int64_t>();
T
Thunderbrook 已提交
342 343 344 345
    int slot = 0;
    if (dump_slot) {
      slot = boost::lexical_cast<int>(sparse_key_names[i]);
    }
346 347 348 349 350 351
    Variable* g_var = scope.FindVar(sparse_grad_names[i]);
    CHECK(g_var != nullptr) << "var[" << sparse_grad_names[i] << "] not found";
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == nullptr) {
      LOG(ERROR) << "tensor of var[" << sparse_key_names[i] << "] is null";
      exit(-1);
352
    }
353 354
    float* g = g_tensor->data<float>();

355 356 357 358 359 360 361
    if (scale_sparse_gradient_with_batch_size_ && grad_dim > 0) {
      int dim = emb_dim + offset;
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / dim, dim);
      g_mat.rightCols(grad_dim) *= batch_size;
    }
362 363 364 365 366
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += emb_dim;
        continue;
      }
367 368
      CHECK(fea_idx < (*push_values).size());
      CHECK(fea_idx < fea_labels.size());
T
Thunderbrook 已提交
369

370
      if (use_cvm) {
T
Thunderbrook 已提交
371
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
372 373
               sizeof(float) * emb_dim);
      } else {
T
Thunderbrook 已提交
374
        memcpy((*push_values)[fea_idx].data() + offset + slot_offset, g,
375
               sizeof(float) * emb_dim);
T
Thunderbrook 已提交
376 377 378 379 380 381
        (*push_values)[fea_idx][show_index] = 1.0f;
        (*push_values)[fea_idx][click_index] =
            static_cast<float>(fea_labels[fea_idx]);
      }
      if (dump_slot) {
        (*push_values)[fea_idx][0] = static_cast<float>(slot);
382
      }
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
      g += emb_dim;
      fea_idx++;
    }
  }
  CHECK(fea_idx == fea_keys.size()) << "fea_idx: " << fea_idx
                                    << "features size: " << fea_keys.size();
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < fea_keys.size(); ++i) {
    push_g_vec.push_back((*push_values)[i].data());
  }
  auto status = pslib_ptr_->_worker_ptr->push_sparse(
      table_id, fea_keys.data(), (const float**)push_g_vec.data(),
      fea_keys.size());
  push_sparse_status->push_back(std::move(status));

#endif
}

401 402 403 404
void FleetWrapper::LoadFromPaddleModel(Scope& scope, const uint64_t table_id,
                                       std::vector<std::string> var_list,
                                       std::string model_path,
                                       std::string model_proto_file,
405
                                       std::vector<std::string> table_var_list,
406
                                       bool load_combine) {
407
#ifdef PADDLE_WITH_PSLIB
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  // load ProgramDesc from model file
  auto read_proto_func = [](const std::string& filename) -> ProgramDesc {
    std::string contents;
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
    fin.seekg(0, std::ios::end);
    contents.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&contents[0], contents.size());
    fin.close();
    ProgramDesc program_desc(contents);
    return program_desc;
  };
  const ProgramDesc old_program = read_proto_func(model_proto_file);
  Scope* old_scope = new Scope();
  auto& old_block = old_program.Block(0);
  auto place = platform::CPUPlace();
  std::vector<std::string> old_param_list;

  for (auto& t : var_list) {
    VarDesc* old_var_desc = old_block.FindVar(t);
    if (old_var_desc == nullptr) {
      continue;
    }
    // init variable in scope
    Variable* old_var = old_scope->Var(old_var_desc->Name());
    InitializeVariable(old_var, old_var_desc->GetType());
    old_param_list.push_back(t);
    if (load_combine) {
      continue;
    }
    // load variable from model
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path + "/" + old_var_desc->Name()});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load", {}, {{"Out", {old_var_desc->Name()}}}, attrs);
    load_op->Run(*old_scope, place);
  }

  if (load_combine) {
    std::sort(old_param_list.begin(), old_param_list.end());
    paddle::framework::AttributeMap attrs;
    attrs.insert({"file_path", model_path});
    auto load_op = paddle::framework::OpRegistry::CreateOp(
        "load_combine", {}, {{"Out", old_param_list}}, attrs);
    load_op->Run(*old_scope, place);
  }

  for (auto& t : old_param_list) {
    Variable* old_var = old_scope->Var(t);
    // old model data, here we assume data type is float
    LoDTensor* old_tensor = old_var->GetMutable<LoDTensor>();
    float* old_data = old_tensor->data<float>();
    // new model data, here we assume data type is float
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* data = tensor->data<float>();
    // copy from old data to new data
    if (old_tensor->numel() > tensor->numel()) {
      memcpy(data, old_data, tensor->numel() * sizeof(float));
    } else {
      memcpy(data, old_data, old_tensor->numel() * sizeof(float));
    }
  }
  delete old_scope;
473 474
  PushDenseParamSync(scope, table_id, table_var_list);
#endif
475 476
}

477 478 479 480 481 482
void FleetWrapper::LoadModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->load(path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
483
    sleep(sleep_seconds_before_fail_exit_);
484 485 486 487 488 489 490
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
                                     const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret =
      pslib_ptr_->_worker_ptr->load(table_id, path, std::to_string(mode));
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
#else
  VLOG(0) << "FleetWrapper::LoadModel does nothing when no pslib";
#endif
}

506 507 508 509 510 511 512
void FleetWrapper::SaveModel(const std::string& path, const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save(path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
513
    sleep(sleep_seconds_before_fail_exit_);
514 515 516 517 518 519 520
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::SaveModel does nothing when no pslib";
#endif
}

521 522 523 524 525 526 527 528 529
double FleetWrapper::GetCacheThreshold() {
#ifdef PADDLE_WITH_PSLIB
  double cache_threshold = 0.0;
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
  ret = pslib_ptr_->_worker_ptr->get_cache_threshold(0, cache_threshold);
  ret.wait();
  if (cache_threshold < 0) {
    LOG(ERROR) << "get cache threshold failed";
530
    sleep(sleep_seconds_before_fail_exit_);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    exit(-1);
  }
  return cache_threshold;
#else
  VLOG(0) << "FleetWrapper::GetCacheThreshold does nothing when no pslib";
  return 0.0;
#endif
}

void FleetWrapper::CacheShuffle(int table_id, const std::string& path,
                                const int mode, const double cache_threshold) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->cache_shuffle(
      0, path, std::to_string(mode), std::to_string(cache_threshold));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "cache shuffle failed";
549
    sleep(sleep_seconds_before_fail_exit_);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::CacheShuffle does nothing when no pslib";
#endif
}

int32_t FleetWrapper::SaveCache(int table_id, const std::string& path,
                                const int mode) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->save_cache(0, path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "table save cache failed";
565
    sleep(sleep_seconds_before_fail_exit_);
566 567 568 569 570 571 572 573 574
    exit(-1);
  }
  return feasign_cnt;
#else
  VLOG(0) << "FleetWrapper::SaveCache does nothing when no pslib";
  return -1;
#endif
}

575 576 577 578 579 580 581 582 583
void FleetWrapper::ShrinkSparseTable(int table_id) {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->shrink(table_id);
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

584 585 586 587 588 589 590 591 592
void FleetWrapper::ClearModel() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->clear();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ClearModel does nothing when no pslib";
#endif
}

593 594
void FleetWrapper::ShrinkDenseTable(int table_id, Scope* scope,
                                    std::vector<std::string> var_list,
595
                                    float decay, int emb_dim) {
596 597 598 599 600 601
#ifdef PADDLE_WITH_PSLIB
  std::vector<paddle::ps::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
602
      VLOG(0) << "prepare shrink dense batch_sum";
603 604
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
605 606 607 608 609 610 611 612 613 614 615 616 617

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
      size_name.replace(size_name.find("batch_sum"), size_name.length(),
                        "batch_size");
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::ps::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto push_status = pslib_ptr_->_worker_ptr->push_dense_param(
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    LOG(FATAL) << "push shrink dense param failed, status[" << status << "]";
635
    sleep(sleep_seconds_before_fail_exit_);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    exit(-1);
  }
#else
  VLOG(0) << "FleetWrapper::ShrinkSparseTable does nothing when no pslib";
#endif
}

void FleetWrapper::ClientFlush() {
#ifdef PADDLE_WITH_PSLIB
  auto ret = pslib_ptr_->_worker_ptr->flush();
  ret.wait();
#else
  VLOG(0) << "FleetWrapper::ServerFlush does nothing when no pslib";
#endif
}

652 653
int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
654
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
655 656 657
  VLOG(3) << "calling FleetWrapper::RegisterClientToClientMsgHandler";
  VLOG(3) << "pslib_ptr_=" << pslib_ptr_;
  VLOG(3) << "_worker_ptr=" << pslib_ptr_->_worker_ptr;
658 659
  return pslib_ptr_->_worker_ptr->registe_client2client_msg_handler(msg_type,
                                                                    handler);
660 661 662 663
#else
  VLOG(0) << "FleetWrapper::RegisterClientToClientMsgHandler"
          << " does nothing when no pslib";
#endif
X
xujiaqi01 已提交
664
  return 0;
665 666
}

667 668
std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
669
#ifdef PADDLE_WITH_PSLIB
670 671
  return pslib_ptr_->_worker_ptr->send_client2client_msg(msg_type, to_client_id,
                                                         msg);
672 673 674 675
#else
  VLOG(0) << "FleetWrapper::SendClientToClientMsg"
          << " does nothing when no pslib";
#endif
676
  return std::future<int32_t>();
X
xujiaqi01 已提交
677 678
}

D
dongdaxiang 已提交
679
template <typename T>
680
void FleetWrapper::Serialize(const std::vector<T*>& t, std::string* str) {
681 682
#ifdef PADDLE_WITH_PSLIB
  paddle::ps::BinaryArchive ar;
683 684 685
  for (size_t i = 0; i < t.size(); ++i) {
    ar << *(t[i]);
  }
X
xujiaqi01 已提交
686
  *str = std::string(ar.buffer(), ar.length());
687
#else
688
  VLOG(0) << "FleetWrapper::Serialize does nothing when no pslib";
689 690 691
#endif
}

D
dongdaxiang 已提交
692
template <typename T>
693
void FleetWrapper::Deserialize(std::vector<T>* t, const std::string& str) {
694
#ifdef PADDLE_WITH_PSLIB
695 696 697
  if (str.length() == 0) {
    return;
  }
698 699
  paddle::ps::BinaryArchive ar;
  ar.set_read_buffer(const_cast<char*>(str.c_str()), str.length(), nullptr);
700 701 702 703 704 705 706 707
  if (ar.cursor() == ar.finish()) {
    return;
  }
  while (ar.cursor() < ar.finish()) {
    t->push_back(ar.get<T>());
  }
  CHECK(ar.cursor() == ar.finish());
  VLOG(3) << "Deserialize size " << t->size();
708
#else
709
  VLOG(0) << "FleetWrapper::Deserialize does nothing when no pslib";
710 711 712
#endif
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;
#ifdef PADDLE_WITH_PSLIB
    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
#endif
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

731
template void FleetWrapper::Serialize<std::vector<MultiSlotType>>(
732 733 734
    const std::vector<std::vector<MultiSlotType>*>&, std::string*);
template void FleetWrapper::Deserialize<std::vector<MultiSlotType>>(
    std::vector<std::vector<MultiSlotType>>*, const std::string&);
735

736 737
}  // end namespace framework
}  // end namespace paddle