test_dropout_op.py 39.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
20
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
21
import paddle
22
import paddle.static as static
23 24
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
H
hong 已提交
25
from paddle.fluid.framework import _test_eager_guard
26
import os
27

H
hong 已提交
28 29
from paddle import _C_ops

30

31
class TestDropoutOp(OpTest):
32
    def setUp(self):
33
        self.op_type = "dropout"
34
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
35
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
36 37
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
38
            'Mask': np.ones((32, 64)).astype('uint8')
Y
Yu Yang 已提交
39
        }
40

41 42 43 44
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
45
        self.check_grad(['X'], 'Out')
46 47


48 49 50
class TestDropoutOpInput1d(OpTest):
    def setUp(self):
        self.op_type = "dropout"
51
        self.inputs = {'X': np.random.random((2000, )).astype("float32")}
52 53 54 55 56 57 58 59 60 61 62 63 64
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out': self.inputs['X'],
            'Mask': np.ones((2000)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


65
class TestDropoutOp2(TestDropoutOp):
66
    def setUp(self):
67
        self.op_type = "dropout"
68
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
69
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
70 71
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
Z
Zeng Jinle 已提交
72
            'Mask': np.zeros((32, 64)).astype('uint8')
Y
Yu Yang 已提交
73
        }
74 75


76
class TestDropoutOp3(TestDropoutOp):
77
    def setUp(self):
78 79
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
80
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
81 82
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
83
            'Mask': np.ones((32, 64, 2)).astype('uint8')
Y
Yu Yang 已提交
84
        }
85 86


87
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
88 89 90 91
class TestDropoutOp4(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
92
        self.attrs = {'dropout_prob': 0.35, 'fix_seed': True, 'is_test': True}
93 94 95
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
96 97 98 99 100

    def test_check_output(self):
        self.check_output()


101
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
102 103 104 105
class TestDropoutOp5(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
106
        self.attrs = {'dropout_prob': 0.75, 'is_test': True}
107 108 109
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
110 111

    def test_check_output(self):
P
phlrain 已提交
112 113 114 115 116 117 118 119 120 121 122
        self.check_output()


class TestDropoutOp6(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 1.0,
            'fix_seed': True,
            'is_test': False,
P
phlrain 已提交
123
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
124 125 126
        }
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
Z
Zeng Jinle 已提交
127
            'Mask': np.zeros((32, 64)).astype('uint8')
P
phlrain 已提交
128 129 130 131 132 133 134 135 136 137 138
        }


class TestDropoutOp7(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.0,
            'fix_seed': True,
            'is_test': False,
P
phlrain 已提交
139
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
140 141 142
        }
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
143
            'Mask': np.ones((32, 64, 2)).astype('uint8')
P
phlrain 已提交
144 145 146
        }


147
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
148 149 150 151 152 153 154 155
class TestDropoutOp8(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.35,
            'fix_seed': True,
            'is_test': True,
P
phlrain 已提交
156
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
157 158 159 160 161 162 163
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
        self.check_output()


164
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
165 166 167 168 169 170 171
class TestDropoutOp9(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.75,
            'is_test': True,
P
phlrain 已提交
172
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
173 174 175 176
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
177 178 179
        self.check_output()


M
mapingshuo 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
class TestDropoutOpWithSeed(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {
            "X": np.random.random((32, 64)).astype("float32"),
            "Seed": np.asarray(
                [125], dtype="int32")
        }
        self.attrs = {'dropout_prob': 0.0, }
        self.outputs = {
            'Out': self.inputs['X'],
            'Mask': np.ones((32, 64)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.05)


201 202 203
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout")
204
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
205
class TestFP16DropoutOp(OpTest):
K
Kexin Zhao 已提交
206 207
    def setUp(self):
        self.op_type = "dropout"
K
Kexin Zhao 已提交
208 209 210 211
        self.init_test_case()

        x = np.random.random(self.input_size).astype("float16")
        out = x * (1.0 - self.prob)
K
Kexin Zhao 已提交
212
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
K
Kexin Zhao 已提交
213 214 215 216 217
        self.attrs = {
            'dropout_prob': self.prob,
            'fix_seed': self.fix_seed,
            'is_test': True
        }
218
        self.outputs = {'Out': out}
K
Kexin Zhao 已提交
219

K
Kexin Zhao 已提交
220 221 222 223 224
    def init_test_case(self):
        self.input_size = [32, 64]
        self.prob = 0.35
        self.fix_seed = True

K
Kexin Zhao 已提交
225
    def test_check_output(self):
226
        self.check_output_with_place(core.CUDAPlace(0), atol=1e-3)
K
Kexin Zhao 已提交
227 228


229 230 231
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout")
232
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
233 234 235 236 237
class TestFP16DropoutOp2(TestFP16DropoutOp):
    def init_test_case(self):
        self.input_size = [32, 64, 3]
        self.prob = 0.75
        self.fix_seed = False
K
Kexin Zhao 已提交
238 239


240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
class TestBF16DropoutOp(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.dtype = np.uint16

        x = np.random.random((32, 64)).astype("float32")
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out':
            convert_float_to_uint16(np.zeros((32, 64)).astype('float32')),
            'Mask': np.zeros((32, 64)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
class TestDropoutOpWithSeedOnCPUPlace(unittest.TestCase):
    def test_seed_cpu_place(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            seed_input_name = "tensor@SeedInput"
            x_var_name = "tensor@X"
            x_out_var = "tensor@XOut"

            mask_var_name = "tensor@Mask"
            seed_input_var = main_program.global_block().create_var(
                name=seed_input_name,
                shape=[1],
                dtype='int32',
                persistable=False,
                stop_gradient=True)
            x_out_var = main_program.global_block().create_var(
                name=x_out_var,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            x_var = main_program.global_block().create_var(
                name=x_var_name,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            mask_var = main_program.global_block().create_var(
                name=mask_var_name,
                shape=[1],
                dtype='int',
                persistable=False,
                stop_gradient=True)

            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": x_var_name},
                attrs={
                    "shape": [40, 40],
                    "dtype": x_var.dtype,
                    "value": 1.0,
                    "place_type": 0
                })
            main_program.global_block().append_op(
                type='seed',
                inputs={},
                outputs={'Out': seed_input_var},
                attrs={'seed': 1,
                       'force_cpu': True})
            main_program.global_block().append_op(
                type='dropout',
                inputs={'X': x_var,
                        'Seed': seed_input_var},
                attrs={'dropout_prob': 0.},
                outputs={'Out': x_out_var,
                         'Mask': mask_var})
            place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            x_out, mask_out = exe.run(
                main_program,
                feed={},
                fetch_list=[x_out_var.name, mask_var.name])
            x_in_np = np.ones([40, 40]).astype("float32")
            self.assertTrue(np.allclose(x_out, x_in_np))


330
class TestDropoutOpError(unittest.TestCase):
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.dropout(x1, dropout_prob=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.dropout(x2, dropout_prob=0.5)

            self.assertRaises(TypeError, test_dtype)


352 353 354 355 356 357 358 359 360
class TestDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
361
            input = fluid.data(name="input", shape=[-1, -1], dtype="float32")
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
            res1 = paddle.nn.functional.dropout(x=input, p=0., training=False)
            res2 = paddle.nn.functional.dropout(
                x=input, p=0., axis=0, training=True, mode='upscale_in_train')
            res3 = paddle.nn.functional.dropout(
                x=input, p=0., axis=0, training=True, mode='downscale_in_infer')
            res4 = paddle.nn.functional.dropout(
                x=input, p=0., axis=0, training=False, mode='upscale_in_train')
            res5 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=0,
                training=False,
                mode='downscale_in_infer')
            res6 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=True,
                mode='upscale_in_train')
            res7 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=True,
                mode='downscale_in_infer')
            res8 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=False,
                mode='upscale_in_train')
            res9 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=False,
                mode='downscale_in_infer')
            res10 = paddle.nn.functional.dropout(x=input, p=1., training=True)
400
            res11 = paddle.fluid.layers.dropout(x=input, dropout_prob=0.)
401 402 403 404 405 406
            res12 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=(0, 1),
                training=False,
                mode='upscale_in_train')
407

408 409 410 411
            res13 = paddle.nn.functional.dropout(
                x=input, p=0.7, axis=1, training=True, mode='upscale_in_train')

            in_np = np.ones([40, 40]).astype("float32")
412 413 414 415
            res_np = in_np
            res_np2 = np.zeros_like(in_np)

            exe = fluid.Executor(place)
416
            res_list = [
417 418
                res1, res2, res3, res4, res5, res6, res7, res8, res9, res11,
                res12
419
            ]
420 421 422 423 424 425 426 427 428
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))
            fetches2 = exe.run(fluid.default_main_program(),
                               feed={"input": in_np},
                               fetch_list=[res10])
            self.assertTrue(np.allclose(fetches2[0], res_np2))
429 430 431
            fetches3 = exe.run(fluid.default_main_program(),
                               feed={"input": in_np},
                               fetch_list=[res13])
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
                res_np2 = np.zeros_like(in_np)
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.dropout(
                    x=input, p=0., training=False)
                res2 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=True,
                    mode='upscale_in_train')
                res3 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=True,
                    mode='downscale_in_infer')
                res4 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=False,
                    mode='upscale_in_train')
                res5 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=False,
                    mode='downscale_in_infer')
                res6 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=True,
                    mode='upscale_in_train')
                res7 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=True,
                    mode='downscale_in_infer')
                res8 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=False,
                    mode='upscale_in_train')
                res9 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=False,
                    mode='downscale_in_infer')
                res10 = paddle.nn.functional.dropout(
                    x=input, p=1., training=True)
497 498
                dropout = paddle.fluid.dygraph.Dropout(p=0, )
                res11 = dropout(input)
499 500 501 502 503 504
                res12 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=(0, 1),
                    training=False,
                    mode='upscale_in_train')
505 506 507 508 509 510
                res13 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.5,
                    axis=1,
                    training=True,
                    mode='upscale_in_train')
511

512
            res_list = [
513 514
                res1, res2, res3, res4, res5, res6, res7, res8, res9, res11,
                res12
515
            ]
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))
            self.assertTrue(np.allclose(res10.numpy(), res_np2))


class TestDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                paddle.nn.functional.dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_Variable2():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                paddle.nn.functional.dropout(x1, p=0.5, axis=0)

            self.assertRaises(TypeError, test_Variable2)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                # float16 only can be set on GPU place
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout(xr, p=0.5)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)

            def test_mode():
                # mode should be 'downscale_in_infer' or 'upscale_in_train'
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, mode='abc')

            self.assertRaises(ValueError, test_mode)

            def test_axis():
                # axis should be int or list
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=1.2)

            self.assertRaises(TypeError, test_axis)

            def test_axis_max():
                # maximum of axis should less than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 5])

            self.assertRaises(ValueError, test_axis_max)

584 585 586 587 588 589 590
            def test_axis_min():
                # minimum of axis should greater equal than 0
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, -1])

            self.assertRaises(ValueError, test_axis_min)

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            def test_axis_len():
                # length of axis should not greater than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 1, 2, 3, 4])

            self.assertRaises(ValueError, test_axis_len)


class TestDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
                m = paddle.nn.Dropout(p=0.)
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


C
cnn 已提交
618
class TestDropout2DFAPI(unittest.TestCase):
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5], dtype="float32")
            res1 = paddle.nn.functional.dropout2d(
                x=input, p=0., training=False, data_format='NCHW')
            res2 = paddle.nn.functional.dropout2d(
                x=input, p=0., training=False, data_format='NHWC')

            in_np = np.random.random([2, 3, 4, 5]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.dropout2d(
                    x=input, p=0., training=False, data_format='NCHW')
                res2 = paddle.nn.functional.dropout2d(
                    x=input, p=0., training=False, data_format='NHWC')

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))


C
cnn 已提交
666
class TestDropout2DFAPIError(unittest.TestCase):
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 4
                x = fluid.data(name='x1', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout2d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCHW' or 'NHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout2d(x, data_format='CNHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
685
class TestDropout2DCAPI(unittest.TestCase):
686 687 688 689 690 691 692 693 694 695 696 697
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
C
cnn 已提交
698
                m = paddle.nn.Dropout2D(p=0.)
699 700 701 702 703
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


C
cnn 已提交
704
class TestDropout3DFAPI(unittest.TestCase):
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5, 6], dtype="float32")
            res1 = paddle.nn.functional.dropout3d(
                x=input, p=0., training=False, data_format='NCDHW')
            res2 = paddle.nn.functional.dropout3d(
                x=input, p=0., training=False, data_format='NDHWC')

            in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.dropout3d(
                    x=input, p=0., training=False, data_format='NCDHW')
                res2 = paddle.nn.functional.dropout3d(
                    x=input, p=0., training=False, data_format='NDHWC')

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))


C
cnn 已提交
752
class TestDropout3DFAPIError(unittest.TestCase):
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 5
                x = fluid.data(name='x1', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout3d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCDHW' or 'NDHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout3d(x, data_format='CNDHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
771
class TestDropout3DCAPI(unittest.TestCase):
772 773 774 775 776 777 778 779 780 781 782 783
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
C
cnn 已提交
784
                m = paddle.nn.Dropout3D(p=0.)
785 786 787 788 789
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


790 791 792 793 794 795 796 797 798 799 800 801 802
class TestAlphaDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[40, 40], dtype="float32")
            res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.)
            res2 = paddle.nn.functional.alpha_dropout(
                x=input, p=0., training=False)
803
            res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.)
804 805 806

            in_np = np.random.random([40, 40]).astype("float32")
            res_np = in_np
807
            res_np3 = np.zeros_like(in_np)
808 809 810 811 812 813 814 815

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))
816 817 818 819
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": in_np},
                              fetch_list=[res3])
            self.assertTrue(np.allclose(fetches[0], res_np3))
820 821 822 823 824 825 826 827 828 829

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
830
                res_np3 = np.zeros_like(in_np)
831 832 833 834 835
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.)
                res2 = paddle.nn.functional.alpha_dropout(
                    x=input, p=0., training=False)
836
                res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.)
837 838 839 840

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))
841
            self.assertTrue(np.allclose(res3.numpy(), res_np3))
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896


class TestAlphaDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                paddle.nn.functional.alpha_dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.alpha_dropout(xr)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)


class TestAlphaDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
                m = paddle.nn.AlphaDropout(p=0.)
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
class TestDropoutWithDeterminateSeedGenerator(unittest.TestCase):
    def setUp(self):
        paddle.framework.random.set_random_seed_generator('seed0', 123)
        paddle.framework.random.set_random_seed_generator('seed1', 123)
        rng0 = paddle.framework.random.get_random_seed_generator('seed0')
        rng1 = paddle.framework.random.get_random_seed_generator('seed1')
        self.places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result(self, place):
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import dropout
        with static.program_guard(static.Program(), static.Program()):
            input = static.data(name="input", shape=[40, 40], dtype="float32")
            res1 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed0')
            res2 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed1')
            res3 = dropout(input, p=0.3)

            in_np = np.random.random([40, 40]).astype("float32")

            exe = static.Executor(place)
            res_list = [res1, res2]
            for i in range(2):
                out1, out2 = exe.run(static.default_main_program(),
                                     feed={"input": in_np},
                                     fetch_list=res_list)
                self.assertTrue(np.allclose(out1, out2))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)


H
hong 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
class TestDropoutBackward(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def cal_grad_upscale_train(self, mask, prob):
        return mask.astype("float32") / (1 - prob)

    def cal_grad_downscale_in_infer(self, mask):
        return mask.astype("float32")

    def test_backward_downscale_in_infer(self):
        for place in self.places:
            with fluid.dygraph.guard(place):

                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', 0.5)
                out.backward()

                self.assertTrue(
                    np.array_equal(input.gradient(
                    ), self.cal_grad_downscale_in_infer(mask.numpy())))

H
hong 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978
    def test_backward_downscale_in_infer_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
                    out, mask = _C_ops.final_state_dropout(
                        input, None, 0.5, False, "downgrade_in_infer", 0, False)
                    out.backward()
                    self.assertTrue(
                        np.array_equal(input.gradient(
                        ), self.cal_grad_downscale_in_infer(mask.numpy())))

H
hong 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    def test_backward_upscale_train(self):
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.5
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', prob,
                                             "dropout_implementation",
                                             "upscale_in_train")
                out.backward()

                self.assertTrue(
                    np.allclose(input.gradient(
                    ), self.cal_grad_upscale_train(mask.numpy(), prob)))
H
hong 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

    def test_backward_upscale_train_eager(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                with _test_eager_guard():
                    prob = 0.5
                    input = paddle.uniform([40, 40], dtype="float32")
                    input.stop_gradient = False
                    out, mask = _C_ops.final_state_dropout(
                        input, None, 0.5, False, "upscale_in_train", 0, False)
                    out.backward()

                    self.assertTrue(
                        np.allclose(input.gradient(
                        ), self.cal_grad_upscale_train(mask.numpy(), prob)))
H
hong 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

    def test_backward_upscale_train_2(self):
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.3
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', prob,
                                             "dropout_implementation",
                                             "upscale_in_train")
                out.backward()

                self.assertTrue(
                    np.allclose(input.gradient(
                    ), self.cal_grad_upscale_train(mask.numpy(), prob)))


1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        # Different GPU generate different random value. Only test V100 here.
        if not "V100" in paddle.device.cuda.get_device_name():
            return

        print("Test Fixed Random number on V100 GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)

        x = paddle.rand([32, 1024, 1024], dtype='float32')
        out = paddle.nn.functional.dropout(x, 0.25).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 390094540)
        self.assertEqual(np.sum(index1), 12871475125)
        self.assertEqual(np.sum(index2), 12872777397)
        self.assertEqual(np.sum(out), 16778744.0)
        expect = [
            0.6914956, 0.5294584, 0.19032137, 0.6996228, 0.3338527, 0.8442094,
            0.96965003, 1.1726775, 0., 0.28037727
        ]
        self.assertTrue(np.allclose(out[10, 100, 500:510], expect))

        x = paddle.rand([32, 1024, 1024], dtype='float64')
        out = paddle.nn.functional.dropout(x).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 260065137)
        self.assertEqual(np.sum(index1), 8582636095)
        self.assertEqual(np.sum(index2), 8582219962)
        self.assertEqual(np.sum(out), 16778396.563660286)
        expect = [
            1.28587354, 0.15563703, 0., 0.28799703, 0., 0., 0., 0.54964,
            0.51355682, 0.33818988
        ]
        self.assertTrue(np.allclose(out[20, 100, 500:510], expect))

        x = paddle.ones([32, 1024, 1024], dtype='float16')
        out = paddle.nn.functional.dropout(x, 0.75).numpy()
        index0, index1, index2 = np.nonzero(out)
        self.assertEqual(np.sum(index0), 130086900)
        self.assertEqual(np.sum(index1), 4291190105)
        self.assertEqual(np.sum(index2), 4292243807)
        expect = [0., 0., 0., 0., 0., 0., 0., 0., 4., 4.]
        self.assertTrue(np.allclose(out[0, 100, 500:510], expect))

        paddle.enable_static()


1080
if __name__ == '__main__':
H
hong 已提交
1081
    paddle.enable_static()
1082
    unittest.main()