test_dropout_op.py 36.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
K
Kexin Zhao 已提交
19
import paddle.fluid.core as core
20
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
21
import paddle
22
import paddle.static as static
23 24
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
25 26


27
class TestDropoutOp(OpTest):
28
    def setUp(self):
29
        self.op_type = "dropout"
30
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
31
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
32 33
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
34
            'Mask': np.ones((32, 64)).astype('uint8')
Y
Yu Yang 已提交
35
        }
36

37 38 39 40
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
41
        self.check_grad(['X'], 'Out')
42 43


44 45 46
class TestDropoutOpInput1d(OpTest):
    def setUp(self):
        self.op_type = "dropout"
47
        self.inputs = {'X': np.random.random((2000, )).astype("float32")}
48 49 50 51 52 53 54 55 56 57 58 59 60
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out': self.inputs['X'],
            'Mask': np.ones((2000)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


61
class TestDropoutOp2(TestDropoutOp):
62
    def setUp(self):
63
        self.op_type = "dropout"
64
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
65
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
66 67
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
Z
Zeng Jinle 已提交
68
            'Mask': np.zeros((32, 64)).astype('uint8')
Y
Yu Yang 已提交
69
        }
70 71


72
class TestDropoutOp3(TestDropoutOp):
73
    def setUp(self):
74 75
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
76
        self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
Y
Yu Yang 已提交
77 78
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
79
            'Mask': np.ones((32, 64, 2)).astype('uint8')
Y
Yu Yang 已提交
80
        }
81 82


83
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
84 85 86 87
class TestDropoutOp4(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
88
        self.attrs = {'dropout_prob': 0.35, 'fix_seed': True, 'is_test': True}
89 90 91
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
92 93 94 95 96

    def test_check_output(self):
        self.check_output()


97
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
98 99 100 101
class TestDropoutOp5(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
102
        self.attrs = {'dropout_prob': 0.75, 'is_test': True}
103 104 105
        self.outputs = {
            'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
        }
106 107

    def test_check_output(self):
P
phlrain 已提交
108 109 110 111 112 113 114 115 116 117 118
        self.check_output()


class TestDropoutOp6(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 1.0,
            'fix_seed': True,
            'is_test': False,
P
phlrain 已提交
119
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
120 121 122
        }
        self.outputs = {
            'Out': np.zeros((32, 64)).astype('float32'),
Z
Zeng Jinle 已提交
123
            'Mask': np.zeros((32, 64)).astype('uint8')
P
phlrain 已提交
124 125 126 127 128 129 130 131 132 133 134
        }


class TestDropoutOp7(TestDropoutOp):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.0,
            'fix_seed': True,
            'is_test': False,
P
phlrain 已提交
135
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
136 137 138
        }
        self.outputs = {
            'Out': self.inputs['X'],
Z
Zeng Jinle 已提交
139
            'Mask': np.ones((32, 64, 2)).astype('uint8')
P
phlrain 已提交
140 141 142
        }


143
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
144 145 146 147 148 149 150 151
class TestDropoutOp8(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.35,
            'fix_seed': True,
            'is_test': True,
P
phlrain 已提交
152
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
153 154 155 156 157 158 159
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
        self.check_output()


160
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
P
phlrain 已提交
161 162 163 164 165 166 167
class TestDropoutOp9(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
        self.attrs = {
            'dropout_prob': 0.75,
            'is_test': True,
P
phlrain 已提交
168
            'dropout_implementation': 'upscale_in_train'
P
phlrain 已提交
169 170 171 172
        }
        self.outputs = {'Out': self.inputs['X']}

    def test_check_output(self):
173 174 175
        self.check_output()


M
mapingshuo 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
class TestDropoutOpWithSeed(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.inputs = {
            "X": np.random.random((32, 64)).astype("float32"),
            "Seed": np.asarray(
                [125], dtype="int32")
        }
        self.attrs = {'dropout_prob': 0.0, }
        self.outputs = {
            'Out': self.inputs['X'],
            'Mask': np.ones((32, 64)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out', max_relative_error=0.05)


197 198 199
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout")
200
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
201
class TestFP16DropoutOp(OpTest):
K
Kexin Zhao 已提交
202 203
    def setUp(self):
        self.op_type = "dropout"
K
Kexin Zhao 已提交
204 205 206 207
        self.init_test_case()

        x = np.random.random(self.input_size).astype("float16")
        out = x * (1.0 - self.prob)
K
Kexin Zhao 已提交
208
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
K
Kexin Zhao 已提交
209 210 211 212 213
        self.attrs = {
            'dropout_prob': self.prob,
            'fix_seed': self.fix_seed,
            'is_test': True
        }
214
        self.outputs = {'Out': out}
K
Kexin Zhao 已提交
215

K
Kexin Zhao 已提交
216 217 218 219 220
    def init_test_case(self):
        self.input_size = [32, 64]
        self.prob = 0.35
        self.fix_seed = True

K
Kexin Zhao 已提交
221
    def test_check_output(self):
222
        self.check_output_with_place(core.CUDAPlace(0), atol=1e-3)
K
Kexin Zhao 已提交
223 224


225 226 227
@unittest.skipIf(
    not core.is_compiled_with_cuda() or not core.op_support_gpu("dropout"),
    "core is not compiled with CUDA or core is not support dropout")
228
@skip_check_grad_ci(reason="For inference, check_grad is not required.")
K
Kexin Zhao 已提交
229 230 231 232 233
class TestFP16DropoutOp2(TestFP16DropoutOp):
    def init_test_case(self):
        self.input_size = [32, 64, 3]
        self.prob = 0.75
        self.fix_seed = False
K
Kexin Zhao 已提交
234 235


236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
class TestBF16DropoutOp(OpTest):
    def setUp(self):
        self.op_type = "dropout"
        self.dtype = np.uint16

        x = np.random.random((32, 64)).astype("float32")
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
        self.outputs = {
            'Out':
            convert_float_to_uint16(np.zeros((32, 64)).astype('float32')),
            'Mask': np.zeros((32, 64)).astype('uint8')
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')


257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
class TestDropoutOpWithSeedOnCPUPlace(unittest.TestCase):
    def test_seed_cpu_place(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            seed_input_name = "tensor@SeedInput"
            x_var_name = "tensor@X"
            x_out_var = "tensor@XOut"

            mask_var_name = "tensor@Mask"
            seed_input_var = main_program.global_block().create_var(
                name=seed_input_name,
                shape=[1],
                dtype='int32',
                persistable=False,
                stop_gradient=True)
            x_out_var = main_program.global_block().create_var(
                name=x_out_var,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            x_var = main_program.global_block().create_var(
                name=x_var_name,
                shape=[40, 40],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            mask_var = main_program.global_block().create_var(
                name=mask_var_name,
                shape=[1],
                dtype='int',
                persistable=False,
                stop_gradient=True)

            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": x_var_name},
                attrs={
                    "shape": [40, 40],
                    "dtype": x_var.dtype,
                    "value": 1.0,
                    "place_type": 0
                })
            main_program.global_block().append_op(
                type='seed',
                inputs={},
                outputs={'Out': seed_input_var},
                attrs={'seed': 1,
                       'force_cpu': True})
            main_program.global_block().append_op(
                type='dropout',
                inputs={'X': x_var,
                        'Seed': seed_input_var},
                attrs={'dropout_prob': 0.},
                outputs={'Out': x_out_var,
                         'Mask': mask_var})
            place = fluid.CPUPlace()
            if core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            x_out, mask_out = exe.run(
                main_program,
                feed={},
                fetch_list=[x_out_var.name, mask_var.name])
            x_in_np = np.ones([40, 40]).astype("float32")
            self.assertTrue(np.allclose(x_out, x_in_np))


326
class TestDropoutOpError(unittest.TestCase):
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.dropout(x1, dropout_prob=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.dropout(x2, dropout_prob=0.5)

            self.assertRaises(TypeError, test_dtype)


348 349 350 351 352 353 354 355 356
class TestDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
357
            input = fluid.data(name="input", shape=[-1, -1], dtype="float32")
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
            res1 = paddle.nn.functional.dropout(x=input, p=0., training=False)
            res2 = paddle.nn.functional.dropout(
                x=input, p=0., axis=0, training=True, mode='upscale_in_train')
            res3 = paddle.nn.functional.dropout(
                x=input, p=0., axis=0, training=True, mode='downscale_in_infer')
            res4 = paddle.nn.functional.dropout(
                x=input, p=0., axis=0, training=False, mode='upscale_in_train')
            res5 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=0,
                training=False,
                mode='downscale_in_infer')
            res6 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=True,
                mode='upscale_in_train')
            res7 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=True,
                mode='downscale_in_infer')
            res8 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=False,
                mode='upscale_in_train')
            res9 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=[0, 1],
                training=False,
                mode='downscale_in_infer')
            res10 = paddle.nn.functional.dropout(x=input, p=1., training=True)
396
            res11 = paddle.fluid.layers.dropout(x=input, dropout_prob=0.)
397 398 399 400 401 402
            res12 = paddle.nn.functional.dropout(
                x=input,
                p=0.,
                axis=(0, 1),
                training=False,
                mode='upscale_in_train')
403

404 405 406 407
            res13 = paddle.nn.functional.dropout(
                x=input, p=0.7, axis=1, training=True, mode='upscale_in_train')

            in_np = np.ones([40, 40]).astype("float32")
408 409 410 411
            res_np = in_np
            res_np2 = np.zeros_like(in_np)

            exe = fluid.Executor(place)
412
            res_list = [
413 414
                res1, res2, res3, res4, res5, res6, res7, res8, res9, res11,
                res12
415
            ]
416 417 418 419 420 421 422 423 424
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))
            fetches2 = exe.run(fluid.default_main_program(),
                               feed={"input": in_np},
                               fetch_list=[res10])
            self.assertTrue(np.allclose(fetches2[0], res_np2))
425 426 427
            fetches3 = exe.run(fluid.default_main_program(),
                               feed={"input": in_np},
                               fetch_list=[res13])
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
                res_np2 = np.zeros_like(in_np)
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.dropout(
                    x=input, p=0., training=False)
                res2 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=True,
                    mode='upscale_in_train')
                res3 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=True,
                    mode='downscale_in_infer')
                res4 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=False,
                    mode='upscale_in_train')
                res5 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=0,
                    training=False,
                    mode='downscale_in_infer')
                res6 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=True,
                    mode='upscale_in_train')
                res7 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=True,
                    mode='downscale_in_infer')
                res8 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=False,
                    mode='upscale_in_train')
                res9 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=[0, 1],
                    training=False,
                    mode='downscale_in_infer')
                res10 = paddle.nn.functional.dropout(
                    x=input, p=1., training=True)
493 494
                dropout = paddle.fluid.dygraph.Dropout(p=0, )
                res11 = dropout(input)
495 496 497 498 499 500
                res12 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.,
                    axis=(0, 1),
                    training=False,
                    mode='upscale_in_train')
501 502 503 504 505 506
                res13 = paddle.nn.functional.dropout(
                    x=input,
                    p=0.5,
                    axis=1,
                    training=True,
                    mode='upscale_in_train')
507

508
            res_list = [
509 510
                res1, res2, res3, res4, res5, res6, res7, res8, res9, res11,
                res12
511
            ]
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))
            self.assertTrue(np.allclose(res10.numpy(), res_np2))


class TestDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                paddle.nn.functional.dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_Variable2():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                paddle.nn.functional.dropout(x1, p=0.5, axis=0)

            self.assertRaises(TypeError, test_Variable2)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                # float16 only can be set on GPU place
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout(xr, p=0.5)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)

            def test_mode():
                # mode should be 'downscale_in_infer' or 'upscale_in_train'
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, mode='abc')

            self.assertRaises(ValueError, test_mode)

            def test_axis():
                # axis should be int or list
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=1.2)

            self.assertRaises(TypeError, test_axis)

            def test_axis_max():
                # maximum of axis should less than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 5])

            self.assertRaises(ValueError, test_axis_max)

580 581 582 583 584 585 586
            def test_axis_min():
                # minimum of axis should greater equal than 0
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, -1])

            self.assertRaises(ValueError, test_axis_min)

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
            def test_axis_len():
                # length of axis should not greater than dimensions of x
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.dropout(x2, axis=[0, 1, 2, 3, 4])

            self.assertRaises(ValueError, test_axis_len)


class TestDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
                m = paddle.nn.Dropout(p=0.)
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


C
cnn 已提交
614
class TestDropout2DFAPI(unittest.TestCase):
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5], dtype="float32")
            res1 = paddle.nn.functional.dropout2d(
                x=input, p=0., training=False, data_format='NCHW')
            res2 = paddle.nn.functional.dropout2d(
                x=input, p=0., training=False, data_format='NHWC')

            in_np = np.random.random([2, 3, 4, 5]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.dropout2d(
                    x=input, p=0., training=False, data_format='NCHW')
                res2 = paddle.nn.functional.dropout2d(
                    x=input, p=0., training=False, data_format='NHWC')

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))


C
cnn 已提交
662
class TestDropout2DFAPIError(unittest.TestCase):
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 4
                x = fluid.data(name='x1', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout2d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCHW' or 'NHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout2d(x, data_format='CNHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
681
class TestDropout2DCAPI(unittest.TestCase):
682 683 684 685 686 687 688 689 690 691 692 693
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
C
cnn 已提交
694
                m = paddle.nn.Dropout2D(p=0.)
695 696 697 698 699
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


C
cnn 已提交
700
class TestDropout3DFAPI(unittest.TestCase):
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(
                name="input", shape=[2, 3, 4, 5, 6], dtype="float32")
            res1 = paddle.nn.functional.dropout3d(
                x=input, p=0., training=False, data_format='NCDHW')
            res2 = paddle.nn.functional.dropout3d(
                x=input, p=0., training=False, data_format='NDHWC')

            in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
            res_np = in_np

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                res_np = in_np
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.dropout3d(
                    x=input, p=0., training=False, data_format='NCDHW')
                res2 = paddle.nn.functional.dropout3d(
                    x=input, p=0., training=False, data_format='NDHWC')

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))


C
cnn 已提交
748
class TestDropout3DFAPIError(unittest.TestCase):
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_xdim():
                # dimentions of x should be 5
                x = fluid.data(name='x1', shape=[2, 3, 4, 5], dtype="int32")
                paddle.nn.functional.dropout3d(x)

            self.assertRaises(ValueError, test_xdim)

            def test_dataformat():
                # data_format should be 'NCDHW' or 'NDHWC'
                x = fluid.data(name='x2', shape=[2, 3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.dropout3d(x, data_format='CNDHW')

            self.assertRaises(ValueError, test_dataformat)


C
cnn 已提交
767
class TestDropout3DCAPI(unittest.TestCase):
768 769 770 771 772 773 774 775 776 777 778 779
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([2, 3, 4, 5, 6]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
C
cnn 已提交
780
                m = paddle.nn.Dropout3D(p=0.)
781 782 783 784 785
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


786 787 788 789 790 791 792 793 794 795 796 797 798
class TestAlphaDropoutFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_result(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[40, 40], dtype="float32")
            res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.)
            res2 = paddle.nn.functional.alpha_dropout(
                x=input, p=0., training=False)
799
            res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.)
800 801 802

            in_np = np.random.random([40, 40]).astype("float32")
            res_np = in_np
803
            res_np3 = np.zeros_like(in_np)
804 805 806 807 808 809 810 811

            exe = fluid.Executor(place)
            res_list = [res1, res2]
            for res in res_list:
                fetches = exe.run(fluid.default_main_program(),
                                  feed={"input": in_np},
                                  fetch_list=[res])
                self.assertTrue(np.allclose(fetches[0], res_np))
812 813 814 815
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": in_np},
                              fetch_list=[res3])
            self.assertTrue(np.allclose(fetches[0], res_np3))
816 817 818 819 820 821 822 823 824 825

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in_np = np.random.random([40, 40]).astype("float32")
                res_np = in_np
826
                res_np3 = np.zeros_like(in_np)
827 828 829 830 831
                input = fluid.dygraph.to_variable(in_np)

                res1 = paddle.nn.functional.alpha_dropout(x=input, p=0.)
                res2 = paddle.nn.functional.alpha_dropout(
                    x=input, p=0., training=False)
832
                res3 = paddle.nn.functional.alpha_dropout(x=input, p=1.)
833 834 835 836

            res_list = [res1, res2]
            for res in res_list:
                self.assertTrue(np.allclose(res.numpy(), res_np))
837
            self.assertTrue(np.allclose(res3.numpy(), res_np3))
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892


class TestAlphaDropoutFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of dropout must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                paddle.nn.functional.alpha_dropout(x1, p=0.5)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of dropout must be float32 or float64
                xr = fluid.data(name='xr', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.alpha_dropout(xr)

            self.assertRaises(TypeError, test_dtype)

            def test_pdtype():
                # p should be int or float
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p='0.5')

            self.assertRaises(TypeError, test_pdtype)

            def test_pvalue():
                # p should be 0.<=p<=1.
                x2 = fluid.data(name='x2', shape=[3, 4, 5, 6], dtype="float32")
                paddle.nn.functional.alpha_dropout(x2, p=1.2)

            self.assertRaises(ValueError, test_pvalue)


class TestAlphaDropoutCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                input_np = np.random.random([40, 40]).astype("float32")
                result_np = input_np
                input = fluid.dygraph.to_variable(input_np)
                m = paddle.nn.AlphaDropout(p=0.)
                m.eval()
                result = m(input)
                self.assertTrue(np.allclose(result.numpy(), result_np))


893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
class TestDropoutWithDeterminateSeedGenerator(unittest.TestCase):
    def setUp(self):
        paddle.framework.random.set_random_seed_generator('seed0', 123)
        paddle.framework.random.set_random_seed_generator('seed1', 123)
        rng0 = paddle.framework.random.get_random_seed_generator('seed0')
        rng1 = paddle.framework.random.get_random_seed_generator('seed1')
        self.places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result(self, place):
        from paddle.distributed.fleet.meta_parallel.parallel_layers.random import dropout
        with static.program_guard(static.Program(), static.Program()):
            input = static.data(name="input", shape=[40, 40], dtype="float32")
            res1 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed0')
            res2 = dropout(
                input,
                p=0.3,
                training=True,
                mode='upscale_in_train',
                rng_name='seed1')
            res3 = dropout(input, p=0.3)

            in_np = np.random.random([40, 40]).astype("float32")

            exe = static.Executor(place)
            res_list = [res1, res2]
            for i in range(2):
                out1, out2 = exe.run(static.default_main_program(),
                                     feed={"input": in_np},
                                     fetch_list=res_list)
                self.assertTrue(np.allclose(out1, out2))

    def test_static(self):
        for place in self.places:
            self.check_static_result(place=place)


H
hong 已提交
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
class TestDropoutBackward(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def cal_grad_upscale_train(self, mask, prob):
        return mask.astype("float32") / (1 - prob)

    def cal_grad_downscale_in_infer(self, mask):
        return mask.astype("float32")

    def test_backward_downscale_in_infer(self):
        for place in self.places:
            with fluid.dygraph.guard(place):

                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', 0.5)
                out.backward()

                self.assertTrue(
                    np.array_equal(input.gradient(
                    ), self.cal_grad_downscale_in_infer(mask.numpy())))

    def test_backward_upscale_train(self):
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.5
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', prob,
                                             "dropout_implementation",
                                             "upscale_in_train")
                out.backward()

                self.assertTrue(
                    np.allclose(input.gradient(
                    ), self.cal_grad_upscale_train(mask.numpy(), prob)))

    def test_backward_upscale_train_2(self):
        for place in self.places:
            with fluid.dygraph.guard(place):

                prob = 0.3
                input = paddle.uniform([40, 40], dtype="float32")
                input.stop_gradient = False
                out, mask = core.ops.dropout(input, 'dropout_prob', prob,
                                             "dropout_implementation",
                                             "upscale_in_train")
                out.backward()

                self.assertTrue(
                    np.allclose(input.gradient(
                    ), self.cal_grad_upscale_train(mask.numpy(), prob)))


995
if __name__ == '__main__':
H
hong 已提交
996
    paddle.enable_static()
997
    unittest.main()