test_dist_mnist.py 6.9 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import argparse
import time
Y
Yancey1989 已提交
18
import math
Y
Yancey1989 已提交
19 20 21 22 23 24 25 26 27 28 29 30

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal

SEED = 1
DTYPE = "float32"
Y
fix ci  
Yancey1989 已提交
31
paddle.dataset.mnist.fetch()
Y
Yancey1989 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    inference_program = fluid.default_main_program().clone()
    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size)
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size)
    opt.minimize(avg_cost)
    return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
    t = fluid.DistributeTranspiler()
    t.transpile(
        trainer_id=trainer_id,
        program=main_program,
        pservers=pserver_endpoints,
        trainers=trainers)
    return t


def run_pserver(pserver_endpoints, trainers, current_endpoint):
    get_model(batch_size=20)
    t = get_transpiler(0,
                       fluid.default_main_program(), pserver_endpoints,
                       trainers)
    pserver_prog = t.get_pserver_program(current_endpoint)
    startup_prog = t.get_startup_program(current_endpoint, pserver_prog)

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exe.run(pserver_prog)


class TestDistMnist(unittest.TestCase):
    def setUp(self):
        self._trainers = 1
        self._pservers = 1
        self._ps_endpoints = "127.0.0.1:9123"

    def start_pserver(self, endpoint):
        p = Process(
            target=run_pserver,
            args=(self._ps_endpoints, self._trainers, endpoint))
        p.start()
        return p.pid

    def _wait_ps_ready(self, pid):
        retry_times = 5
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(1)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
            except os.error:
                retry_times -= 1

    def stop_pserver(self, pid):
Y
Yancey1989 已提交
149
        os.kill(pid, signal.SIGTERM)
Y
Yancey1989 已提交
150 151

    def test_with_place(self):
Y
fix ci  
Yancey1989 已提交
152
        p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
Y
Yancey1989 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        ) else fluid.CPUPlace()

        pserver_pid = self.start_pserver(self._ps_endpoints)
        self._wait_ps_ready(pserver_pid)

        self.run_trainer(p, 0)

        self.stop_pserver(pserver_pid)

    def run_trainer(self, place, trainer_id):
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
            batch_size=20)
        t = get_transpiler(trainer_id,
                           fluid.default_main_program(), self._ps_endpoints,
                           self._trainers)

        trainer_prog = t.get_trainer_program()

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.itervalues()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        for pass_id in xrange(10):
            for batch_id, data in enumerate(train_reader()):
                exe.run(trainer_prog, feed=feeder.feed(data))

                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[batch_acc, avg_cost])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = np.array(acc_set).mean()
                    avg_loss_val = np.array(avg_loss_set).mean()
                    if float(acc_val
Y
Yancey1989 已提交
198
                             ) > 0.8:  # Smaller value to increase CI speed
Y
Yancey1989 已提交
199 200 201 202 203 204 205 206 207 208 209 210
                        return
                    else:
                        print(
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
                                   float(avg_loss_val), float(acc_val)))
                        if math.isnan(float(avg_loss_val)):
                            assert ("got Nan loss, training failed.")


if __name__ == "__main__":
    unittest.main()