test_dist_mnist.py 6.8 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import argparse
import time

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal

SEED = 1
DTYPE = "float32"


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale)))
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor)

    inference_program = fluid.default_main_program().clone()
    # Optimization
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999)

    # Reader
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size)
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size)
    opt.minimize(avg_cost)
    return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
    t = fluid.DistributeTranspiler()
    t.transpile(
        trainer_id=trainer_id,
        program=main_program,
        pservers=pserver_endpoints,
        trainers=trainers)
    return t


def run_pserver(pserver_endpoints, trainers, current_endpoint):
    get_model(batch_size=20)
    t = get_transpiler(0,
                       fluid.default_main_program(), pserver_endpoints,
                       trainers)
    pserver_prog = t.get_pserver_program(current_endpoint)
    startup_prog = t.get_startup_program(current_endpoint, pserver_prog)

    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    exe.run(pserver_prog)


class TestDistMnist(unittest.TestCase):
    def setUp(self):
        self._trainers = 1
        self._pservers = 1
        self._ps_endpoints = "127.0.0.1:9123"

    def start_pserver(self, endpoint):
        p = Process(
            target=run_pserver,
            args=(self._ps_endpoints, self._trainers, endpoint))
        p.start()
        return p.pid

    def _wait_ps_ready(self, pid):
        retry_times = 5
        while True:
            assert retry_times >= 0, "wait ps ready failed"
            time.sleep(1)
            try:
                # the listen_and_serv_op would touch a file which contains the listen port
                # on the /tmp directory until it was ready to process all the RPC call.
                os.stat("/tmp/paddle.%d.port" % pid)
                return
            except os.error:
                retry_times -= 1

    def stop_pserver(self, pid):
        os.kill(pid, signal.SIGTERM)

    def test_with_place(self):
        p = fluid.CUDAPlace() if core.is_compiled_with_cuda(
        ) else fluid.CPUPlace()

        pserver_pid = self.start_pserver(self._ps_endpoints)
        self._wait_ps_ready(pserver_pid)

        self.run_trainer(p, 0)

        self.stop_pserver(pserver_pid)

    def run_trainer(self, place, trainer_id):
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = get_model(
            batch_size=20)
        t = get_transpiler(trainer_id,
                           fluid.default_main_program(), self._ps_endpoints,
                           self._trainers)

        trainer_prog = t.get_trainer_program()

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.itervalues()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        for pass_id in xrange(10):
            for batch_id, data in enumerate(train_reader()):
                exe.run(trainer_prog, feed=feeder.feed(data))

                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[batch_acc, avg_cost])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = np.array(acc_set).mean()
                    avg_loss_val = np.array(avg_loss_set).mean()
                    if float(acc_val
                             ) > 0.2:  # Smaller value to increase CI speed
                        return
                    else:
                        print(
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
                                   float(avg_loss_val), float(acc_val)))
                        if math.isnan(float(avg_loss_val)):
                            assert ("got Nan loss, training failed.")


if __name__ == "__main__":
    unittest.main()