detection.py 50.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
20
from ..layer_helper import LayerHelper
21 22
from . import tensor
from . import nn
23
from . import ops
C
chengduoZH 已提交
24
import math
25
import numpy
26
from functools import reduce
27

C
chengduoZH 已提交
28
__all__ = [
29
    'prior_box',
C
chengduoZH 已提交
30
    'multi_box_head',
31 32 33 34
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
35
    'detection_map',
Y
Yuan Gao 已提交
36
    'rpn_target_assign',
37
    'anchor_generator',
C
chengduoZH 已提交
38
]
39

40 41 42
__auto__ = [
    'iou_similarity',
    'box_coder',
B
Bai Yifan 已提交
43
    'polygon_box_transform',
C
chengduoZH 已提交
44
]
45

46 47 48 49 50
__all__ += __auto__

for _OP in set(__auto__):
    globals()[_OP] = generate_layer_fn(_OP)

51

Y
Yuan Gao 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
def rpn_target_assign(loc,
                      scores,
                      anchor_box,
                      gt_box,
                      rpn_batch_size_per_im=256,
                      fg_fraction=0.25,
                      rpn_positive_overlap=0.7,
                      rpn_negative_overlap=0.3):
    """
    ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
        fg_fraction(float): Target fraction of RoI minibatch that is labeled
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
        tuple: 
               A tuple(predicted_scores, predicted_location, target_label,
               target_bbox) is returned. The predicted_scores and
               predicted_location is the predicted result of the RPN.
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
               anchors, the F and B is depends on the input of this operator. 

    Examples:
        .. code-block:: python

        loc = layers.data(name='location', shape=[2, 80],
                          append_batch_size=False, dtype='float32')
        scores = layers.data(name='scores', shape=[2, 40],
                          append_batch_size=False, dtype='float32')
        anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                          append_batch_size=False, dtype='float32')
        gt_box = layers.data(name='gt_box', shape=[10, 4],
                         append_batch_size=False, dtype='float32')
        loc_pred, score_pred, loc_target, score_target =
            fluid.layers.detection_output(loc=location,
                                          scores=scores,
                                          anchor_box=anchor_box,
                                          gt_box=gt_box)
    """

    helper = LayerHelper('rpn_target_assign', **locals())
    # 1. Compute the regression target bboxes
    target_bbox = box_coder(
        prior_box=anchor_box,
        target_box=gt_box,
        code_type='encode_center_size',
        box_normalized=False)

    # 2. Compute overlaps between the prior boxes and the gt boxes overlaps
    iou = iou_similarity(x=gt_box, y=anchor_box)

    # 3. Assign target label to anchors
    loc_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
    score_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
    target_label = helper.create_tmp_variable(dtype=anchor_box.dtype)
    helper.append_op(
        type="rpn_target_assign",
        inputs={'Overlap': iou, },
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
            'TargetLabel': target_label,
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
            'fg_fraction': fg_fraction,
        })

    # 4. Reshape and gather the target entry
J
jerrywgz 已提交
169
    scores = nn.reshape(x=scores, shape=(-1, 2))
Y
Yuan Gao 已提交
170 171 172 173 174 175 176 177 178 179 180
    loc = nn.reshape(x=loc, shape=(-1, 4))
    target_label = nn.reshape(x=target_label, shape=(-1, 1))
    target_bbox = nn.reshape(x=target_bbox, shape=(-1, 4))

    predicted_scores = nn.gather(scores, score_index)
    predicted_location = nn.gather(loc, loc_index)
    target_label = nn.gather(target_label, score_index)
    target_bbox = nn.gather(target_bbox, loc_index)
    return predicted_scores, predicted_loc, target_label, target_bbox


Y
Yuan Gao 已提交
181 182
def detection_output(loc,
                     scores,
183 184 185 186 187 188 189 190 191
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
192
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
193

194 195
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
196

197 198 199 200 201 202
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
203 204 205 206 207 208

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
209 210 211 212
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
235 236 237
        Variable: 
        
            The detection outputs is a LoDTensor with shape [No, 6].
238 239 240 241 242 243 244 245
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
246 247 248 249

    Examples:
        .. code-block:: python

250
            pb = layers.data(name='prior_box', shape=[10, 4],
251
                         append_batch_size=False, dtype='float32')
252
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
253
                          append_batch_size=False, dtype='float32')
254
            loc = layers.data(name='target_box', shape=[2, 21, 4],
255
                          append_batch_size=False, dtype='float32')
256
            scores = layers.data(name='scores', shape=[2, 21, 10],
257
                          append_batch_size=False, dtype='float32')
258
            nmsed_outs = fluid.layers.detection_output(scores=scores,
259 260 261 262 263
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
264 265 266 267 268
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
269 270 271
    compile_shape = scores.shape
    run_shape = ops.shape(scores)
    scores = nn.flatten(x=scores, axis=2)
272
    scores = nn.softmax(input=scores)
273
    scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
274
    scores = nn.transpose(scores, perm=[0, 2, 1])
275
    scores.stop_gradient = True
276
    nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype)
277 278 279 280 281 282 283 284 285 286 287 288 289
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
290
    nmsed_outs.stop_gradient = True
291
    return nmsed_outs
C
chengduoZH 已提交
292 293


X
Xin Pan 已提交
294
@templatedoc()
295 296
def detection_map(detect_res,
                  label,
297 298
                  class_num,
                  background_label=0,
299 300
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
301 302 303 304
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
346 347
    helper = LayerHelper("detection_map", **locals())

348 349 350 351 352 353 354 355 356 357 358 359 360 361
    def __create_var(type):
        return helper.create_tmp_variable(dtype=type)

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

362 363 364 365 366
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
367
            'HasState': has_state,
368 369 370 371 372 373 374 375 376 377 378 379 380
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
381 382
            'ap_type': ap_version,
            'class_num': class_num,
383
        })
384
    return map_out
385 386


387 388 389 390
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
391
    """
Y
yuyang18 已提交
392 393
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
394
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
395 396 397 398 399 400 401 402
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
403 404 405
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
406

Y
yuyang18 已提交
407
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
408 409 410
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
411 412 413
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

414 415 416 417 418
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
419 420 421 422 423 424
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
425
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
426
           'bipartite' or 'per_prediction'. [default 'bipartite'].
427 428
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
429
            on the maximum distance, 0.5 by default.
430
    Returns:
Y
yuyang18 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
454 455 456 457 458 459 460
    """
    helper = LayerHelper('bipartite_match', **locals())
    match_indices = helper.create_tmp_variable(dtype='int32')
    match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype)
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
461 462 463 464
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
482

483 484 485 486 487
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
488

489
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
490

491 492 493
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
494

495 496
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
497

498
        Otherwise,
C
chengduoZH 已提交
499

500 501
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
502

503
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
504

505 506
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
507 508
    
    .. code-block:: text
C
chengduoZH 已提交
509

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        tuple: 
               A tuple(out, out_weight) is returned. out is a 3D Tensor with 
               shape [N, P, K], N and P is the same as they are in 
               `neg_indices`, K is the same as it in input of X. If 
               `match_indices[i][j]`. out_weight is the weight for output with 
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    """
    helper = LayerHelper('target_assign', **locals())
    out = helper.create_tmp_variable(dtype=input.dtype)
    out_weight = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
572
             normalize=True,
573 574
             sample_size=None):
    """
Y
yuyang18 已提交
575
    **Multi-box loss layer for object detection algorithm of SSD**
576 577 578 579 580 581 582

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
583
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
584

585
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
586

587
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
588

589
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
590

591
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
592

593
      2.2. Compute confidence loss.
Y
yuyang18 已提交
594

595 596
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
597

598
    4. Assign classification and regression targets
Y
yuyang18 已提交
599

600
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
601

602
      4.2. Assign regression targets.
Y
yuyang18 已提交
603

604
      4.3. Assign classification targets.
Y
yuyang18 已提交
605

606
    5. Compute the overall objective loss.
Y
yuyang18 已提交
607

608
      5.1 Compute confidence loss.
Y
yuyang18 已提交
609

610
      5.1 Compute localization loss.
Y
yuyang18 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
635
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
636
        neg_overlap (float): The negative overlap upper bound for the unmatched
637
            predictions. Use only when mining_type is 'max_negative',
638 639 640 641
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
642
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
643 644
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
645
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
646
            of output locations, True by default.
647 648
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
649 650

    Returns:
Y
yuyang18 已提交
651 652
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
653 654

    Raises:
Y
yuyang18 已提交
655 656
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
676 677 678 679 680 681 682
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
683
    conf_shape = ops.shape(confidence)
684 685

    def __reshape_to_2d(var):
686
        return nn.flatten(x=var, axis=2)
687 688 689 690 691

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
692 693
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
694 695 696

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
697 698
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
699
    gt_label.stop_gradient = True
700 701 702 703 704 705 706
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
707
    target_label.stop_gradient = True
708 709
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
710 711 712 713 714
    conf_loss = nn.reshape(
        x=conf_loss,
        shape=(num, num_prior),
        actual_shape=ops.slice(
            conf_shape, axes=[0], starts=[0], ends=[2]))
715
    conf_loss.stop_gradient = True
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    neg_indices = helper.create_tmp_variable(dtype='int32')
    dtype = matched_indices.dtype
    updated_matched_indices = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
733
            'neg_dist_threshold': neg_overlap,
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
759

760 761 762 763
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

764 765 766 767
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

768 769 770 771 772 773 774 775
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

776 777 778 779
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

780 781
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
782
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
783 784 785 786 787
    loss = nn.reshape(
        x=loss,
        shape=(num, num_prior),
        actual_shape=ops.slice(
            conf_shape, axes=[0], starts=[0], ends=[2]))
788 789 790 791 792
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

793
    return loss
C
chengduoZH 已提交
794 795


796 797 798 799
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
800
              aspect_ratios=[1.],
801 802 803 804 805
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
806 807
              name=None,
              min_max_aspect_ratios_order=False):
808
    """
Q
update  
qiaolongfei 已提交
809
    **Prior Box Operator**
810 811 812 813 814 815 816 817 818 819 820

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
821
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
822 823
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
824 825
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
826 827 828 829
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
830
       step(list|turple): Prior boxes step across width and height, If
831
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
832 833
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
834 835
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
836 837 838 839 840
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
            in order of [min, max, aspect_ratios], which is consistent with 
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
841 842

    Returns:
Q
update  
qiaolongfei 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
856 857 858 859


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
860 861 862 863 864 865 866

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
867 868 869 870
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

886 887 888 889 890 891 892 893
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
894 895
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
896 897
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
898 899
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
        attrs['max_sizes'] = max_sizes

    box = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
916
def multi_box_head(inputs,
C
chengduoZH 已提交
917 918
                   image,
                   base_size,
C
chengduoZH 已提交
919
                   num_classes,
C
chengduoZH 已提交
920
                   aspect_ratios,
921 922
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
923 924
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
925 926 927 928
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
929 930
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
931
                   clip=False,
C
chengduoZH 已提交
932
                   kernel_size=1,
C
chengduoZH 已提交
933
                   pad=0,
C
chengduoZH 已提交
934
                   stride=1,
935 936
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
937
    """
C
chengduoZH 已提交
938 939
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
940
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
941
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
942 943

    Args:
944
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
945
            of all Variables is NCHW.
C
chengduoZH 已提交
946 947
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
948 949
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
972
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
973 974 975 976 977 978
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
979 980 981 982 983
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
            in order of [min, max, aspect_ratios], which is consistent with 
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
984 985

    Returns:
Q
update  
qiaolongfei 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1001

C
chengduoZH 已提交
1002 1003 1004

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1005 1006

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1017 1018
    """

C
chengduoZH 已提交
1019
    def _reshape_with_axis_(input, axis=1):
1020
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1021
        return out
1022

1023 1024
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1025

C
chengduoZH 已提交
1026 1027 1028 1029
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1030 1031
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1032

C
chengduoZH 已提交
1033 1034 1035 1036 1037
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1038
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1039 1040 1041
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
1042
        for ratio in range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1043 1044 1045 1046 1047
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1071 1072
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1073 1074
    box_results = []
    var_results = []
C
chengduoZH 已提交
1075 1076
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1077 1078
        max_size = max_sizes[i]

1079
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1080
            min_size = [min_size]
C
chengduoZH 已提交
1081 1082
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1083 1084 1085 1086

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1087
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1088
                aspect_ratio = [aspect_ratio]
1089
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1090

1091
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1092 1093
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1094 1095 1096 1097 1098

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1099

1100
        # get loc
Y
Yuan Gao 已提交
1101
        num_loc_output = num_boxes * 4
1102
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1103
            input=input,
1104 1105 1106 1107 1108
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1109
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1110
        compile_shape = [
Y
Yuan Gao 已提交
1111 1112 1113
            mbox_loc.shape[0],
            mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3] / 4, 4
        ]
1114 1115 1116
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1117
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1118

1119
        # get conf
C
chengduoZH 已提交
1120
        num_conf_output = num_boxes * num_classes
1121
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1122
            input=input,
1123 1124 1125 1126
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1127
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1128 1129
        new_shape = [0, -1, num_classes]
        compile_shape = [
Y
Yuan Gao 已提交
1130 1131 1132
            conf_loc.shape[0], conf_loc.shape[1] * conf_loc.shape[2] *
            conf_loc.shape[3] / num_classes, num_classes
        ]
1133 1134 1135 1136
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1137
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1138

C
chengduoZH 已提交
1139 1140 1141
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1142 1143
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1153 1154
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1155

1156 1157
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1158
    return mbox_locs_concat, mbox_confs_concat, box, var
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

    anchor = helper.create_tmp_variable(dtype)
    var = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var