test_concat_op.py 16.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
22
from paddle.fluid.framework import _test_eager_guard
23
import paddle
24 25


26
class TestConcatOp(OpTest):
27
    def setUp(self):
28
        self.op_type = "concat"
29
        self.python_api = paddle.concat
30
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
31 32 33
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
34 35 36 37 38 39
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
40 41
        self.outputs = {
            'Out': np.concatenate(
42
                (self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
43
        }
44

45
    def get_dtype(self):
46
        return "float64"
47

48
    def test_check_output(self):
49 50 51 52
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
53
            self.check_output(check_eager=True)
54

55
    def test_check_grad(self):
56 57 58 59 60 61
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
62 63 64
            self.check_grad(['x0'], 'Out', check_eager=True)
            self.check_grad(['x1'], 'Out', check_eager=True)
            self.check_grad(['x2'], 'Out', check_eager=True)
C
chengduoZH 已提交
65 66

    def init_test_data(self):
67 68 69 70 71 72 73 74 75 76 77
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
78 79 80
        self.axis = 1


81
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
82
    def init_test_data(self):
83 84 85
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
86
        self.axis = 1
87

88

89 90
@skip_check_grad_ci(
    reason="The function 'check_grad' for large inputs is too slow.")
91 92
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
93 94 95
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
96 97 98 99 100 101
        self.axis = 1

    def test_check_grad(self):
        pass


102 103 104
@skip_check_grad_ci(
    reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
)
105 106
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
107 108 109
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
110 111 112 113 114 115
        self.axis = 0

    def test_check_grad(self):
        pass


116 117
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
Z
zhupengyang 已提交
118 119 120
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
121 122 123
        self.axis = -3


124 125 126 127
class TestConcatOp6(TestConcatOp):
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
128
        self.python_api = paddle.concat
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
            'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)),
                  ('x2', (self.x2, self.lod))]
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
146
        self.check_output(check_eager=True)
147 148

    def test_check_grad(self):
149 150 151
        self.check_grad(['x0'], 'Out', check_eager=True)
        self.check_grad(['x1'], 'Out', check_eager=True)
        self.check_grad(['x2'], 'Out', check_eager=True)
152 153 154 155 156 157 158 159

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


160 161 162 163
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
164
            self.python_api = paddle.concat
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis)
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
195
create_test_AxisTensor(TestConcatOp6)
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
#----------------Concat Fp16----------------


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
215
create_test_fp16(TestConcatOp6)
216

217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
#----------------Concat Bf16----------------
def create_test_bf16(parent):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConcatBf16(parent):
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


234
class TestConcatOpError(unittest.TestCase):
235 236
    def test_errors(self):
        with program_guard(Program(), Program()):
237 238 239 240 241
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
242
                np.array([[-1]]), [[1]], fluid.CPUPlace())
243 244 245
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
246
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
247 248 249 250 251
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
252
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
253
            fluid.layers.concat([x6, x7])
254

255 256 257 258 259 260
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

261 262 263 264 265
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

266

267
class TestConcatAPI(unittest.TestCase):
268
    def test_fluid_api(self):
269
        paddle.enable_static()
270 271 272 273 274 275 276
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
277 278
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
279
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
280 281
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
282 283

        exe = fluid.Executor(place=fluid.CPUPlace())
284
        [res_1, res_2, res_3] = exe.run(
285 286 287 288
            fluid.default_main_program(),
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
289
            fetch_list=[out_1, out_2, out_3])
290 291
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
292
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
293

294
    def test_api(self):
295
        paddle.enable_static()
L
liuyuhui 已提交
296 297
        x_1 = paddle.fluid.data(
            shape=[None, 1, 4, 5], dtype='int32', name='x_1')
298 299 300 301 302 303
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
304 305 306
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
307 308 309 310 311
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

312
        exe = paddle.static.Executor(place=paddle.CPUPlace())
313
        [res_1, res_2, res_3, res_4] = exe.run(
314
            paddle.static.default_main_program(),
315 316 317 318 319 320 321 322 323 324 325 326 327
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
            fetch_list=[out_1, out_2, out_3, out_4])
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
328
        paddle.disable_static()
Z
Zhou Wei 已提交
329 330 331
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
332 333 334 335 336
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
337 338 339
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

340 341 342 343 344 345
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_fluid_api()
            self.test_imperative()

346 347 348 349 350 351 352 353 354
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
355 356
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

374

375 376 377 378 379 380 381
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
382
        self.python = paddle.concat
383 384 385 386 387 388
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
                tensor_array = fluid.layers.create_array(dtype='float32')
                zero = fluid.layers.fill_constant(
                    shape=[1], value=0, dtype="int64")

                for i in range(self.iter_num):
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
                tensor_array = fluid.layers.create_array(
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
411

412 413 414 415 416 417 418 419
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
420

421 422
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
423

424 425
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
426 427 428 429 430 431 432 433 434 435
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
                res[0],
                np.concatenate(
                    [self.x] * self.iter_num, axis=self.axis)))


436 437
if __name__ == '__main__':
    unittest.main()