test_concat_op.py 16.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
22
import paddle
23 24


25
class TestConcatOp(OpTest):
26
    def setUp(self):
27
        self.op_type = "concat"
28
        self.python_api = paddle.concat
29
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
30 31 32
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
33 34 35 36 37 38
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
39 40
        self.outputs = {
            'Out': np.concatenate(
41
                (self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
42
        }
43

44
    def get_dtype(self):
45
        return "float64"
46

47
    def test_check_output(self):
48 49 50 51 52
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
            self.check_output()
53

54
    def test_check_grad(self):
55 56 57 58 59 60 61 62 63
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
            self.check_grad(['x0'], 'Out')
            self.check_grad(['x1'], 'Out')
            self.check_grad(['x2'], 'Out')
C
chengduoZH 已提交
64 65

    def init_test_data(self):
66 67 68 69 70 71 72 73 74 75 76
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
77 78 79
        self.axis = 1


80
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
81
    def init_test_data(self):
82 83 84
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
85
        self.axis = 1
86

87

88 89
@skip_check_grad_ci(
    reason="The function 'check_grad' for large inputs is too slow.")
90 91
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
92 93 94
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
95 96 97 98 99 100
        self.axis = 1

    def test_check_grad(self):
        pass


101 102 103
@skip_check_grad_ci(
    reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
)
104 105
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
106 107 108
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
109 110 111 112 113 114
        self.axis = 0

    def test_check_grad(self):
        pass


115 116
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
Z
zhupengyang 已提交
117 118 119
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
120 121 122
        self.axis = -3


123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
class TestConcatOp6(TestConcatOp):
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
            'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)),
                  ('x2', (self.x2, self.lod))]
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
        self.check_output(check_dygraph=False)

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', check_dygraph=False)
        self.check_grad(['x1'], 'Out', check_dygraph=False)
        self.check_grad(['x2'], 'Out', check_dygraph=False)

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis)
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
192
create_test_AxisTensor(TestConcatOp6)
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#----------------Concat Fp16----------------


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
212
create_test_fp16(TestConcatOp6)
213

214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
#----------------Concat Bf16----------------
def create_test_bf16(parent):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConcatBf16(parent):
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


231
class TestConcatOpError(unittest.TestCase):
232 233
    def test_errors(self):
        with program_guard(Program(), Program()):
234 235 236 237 238
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
239
                np.array([[-1]]), [[1]], fluid.CPUPlace())
240 241 242
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
243
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
244 245 246 247 248
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
249
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
250
            fluid.layers.concat([x6, x7])
251

252 253 254 255 256 257
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

258 259 260 261 262
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

263

264
class TestConcatAPI(unittest.TestCase):
265
    def test_fluid_api(self):
266
        paddle.enable_static()
267 268 269 270 271 272 273
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
274 275
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
276
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
277 278
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
279 280

        exe = fluid.Executor(place=fluid.CPUPlace())
281
        [res_1, res_2, res_3] = exe.run(
282 283 284 285
            fluid.default_main_program(),
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
286
            fetch_list=[out_1, out_2, out_3])
287 288
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
289
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
290

291
    def test_api(self):
292
        paddle.enable_static()
L
liuyuhui 已提交
293 294
        x_1 = paddle.fluid.data(
            shape=[None, 1, 4, 5], dtype='int32', name='x_1')
295 296 297 298 299 300
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
301 302 303
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
304 305 306 307 308
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

309
        exe = paddle.static.Executor(place=paddle.CPUPlace())
310
        [res_1, res_2, res_3, res_4] = exe.run(
311
            paddle.static.default_main_program(),
312 313 314 315 316 317 318 319 320 321 322 323 324
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
            fetch_list=[out_1, out_2, out_3, out_4])
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
325
        paddle.disable_static()
Z
Zhou Wei 已提交
326 327 328
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
329 330 331 332 333
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
334 335 336 337 338 339 340 341 342 343 344 345
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
346 347
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

365

366 367 368 369 370 371 372 373 374 375 376 377 378
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
                tensor_array = fluid.layers.create_array(dtype='float32')
                zero = fluid.layers.fill_constant(
                    shape=[1], value=0, dtype="int64")

                for i in range(self.iter_num):
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
                tensor_array = fluid.layers.create_array(
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
401

402 403 404 405 406 407 408 409
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
410

411 412
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
413

414 415
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
416 417 418 419 420 421 422 423 424 425
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
                res[0],
                np.concatenate(
                    [self.x] * self.iter_num, axis=self.axis)))


426 427
if __name__ == '__main__':
    unittest.main()