test_auto_parallel_partitioner.py 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import unittest.mock
from io import StringIO
import numpy as np

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
import paddle.tensor as tensor
from paddle.fluid import layers
from paddle.nn.layer.transformer import _convert_param_attr_to_list
import paddle.distributed.auto_parallel as auto
31
from paddle.distributed.auto_parallel.completion import Completer
32
from paddle.distributed.auto_parallel.utils import check_distributed_attr_for_program
33
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
34
from paddle.distributed.auto_parallel.utils import append_distributed_attr_suffix
35
from paddle.distributed.auto_parallel.dist_context import DistributedContext
36 37 38
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.utils import _get_comm_group
39
from paddle.distributed.auto_parallel.process_group import new_process_group
40 41

paddle.enable_static()
42
_global_parallel_strategy = None
43 44 45 46 47 48 49 50
_global_process_mesh = None


def get_programs(annotated_func):
    train_program = static.Program()
    start_program = static.Program()
    dist_context = DistributedContext()
    global _global_process_mesh
51
    dist_context.process_mesh = _global_process_mesh
52
    train_program, start_program = annotated_func(train_program, start_program)
53 54 55
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
56
    dist_context.block_state.parse_forward_blocks(complete_train_program)
57 58 59

    rank_id = 3
    dist_strategy = fleet.DistributedStrategy()
60 61 62
    partitioner = Partitioner(dist_context, rank_id)
    test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog, _ = partitioner.partition(
        complete_train_program, start_program, [])
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    return complete_train_program, start_program, test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog, dist_context


def is_all_parameters_shape_equal(prog1, prog2):

    params1 = prog1.all_parameters()
    params2 = prog2.all_parameters()
    params1.sort(key=lambda x: x.name)
    params2.sort(key=lambda x: x.name)
    shape1 = [tensor.shape for tensor in params1]
    shape2 = [tensor.shape for tensor in params2]

    if len(shape1) != len(shape2):
        return False
    for i in range(len(shape1)):
        if shape1[i] != shape2[i]:
            return False
    return True


def check_tensor_split(prog1, varnames1, prog2, varnames2, axis, nsplit):

    for i in range(len(varnames1)):
        var1 = prog1.global_block().var(varnames1[i])
        var2 = prog2.global_block().var(varnames2[i])
        if var1.shape[axis] != (var2.shape[axis] // nsplit):
            return False

    return True


def initialization_check(mode, dist_context, dist_startup_prog,
96 97
                         serial_startup_prog, var_need_broadcast, process_mesh,
                         mp_parallel_axis, dp_parallel_axis):
98
    if 'mp' in mode:
99 100
        group_ranks = _get_comm_group(
            process_mesh.processes, process_mesh.topology, mp_parallel_axis, 3)
101 102 103 104 105 106 107 108 109 110 111 112
        mp_ring_id = new_process_group(group_ranks).id
        broadcast_ops = [
            op for op in dist_startup_prog.global_block().ops
            if (op.type == "c_broadcast" and op.desc.attr("ring_id") ==
                mp_ring_id)
        ]
        broadcast_varnames = sorted(
            [op.desc.output_arg_names()[0] for op in broadcast_ops])
        if broadcast_varnames != var_need_broadcast:
            return False

    if 'dp' in mode:
113 114
        group_ranks = _get_comm_group(
            process_mesh.processes, process_mesh.topology, dp_parallel_axis, 3)
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        dp_ring_id = new_process_group(group_ranks).id
        nparam = len(serial_startup_prog.all_parameters())
        nbroadcast_dp = len([
            op for op in dist_startup_prog.global_block().ops
            if (op.type == "c_broadcast" and op.desc.attr("ring_id") ==
                dp_ring_id)
        ])
        if nparam != nbroadcast_dp:
            return False

    if "dp" in mode and 'mp' in mode:
        nbroadcast = len([
            op for op in dist_startup_prog.global_block().ops
            if op.type == "c_broadcast"
        ])
        if len(var_need_broadcast) + nbroadcast_dp != nbroadcast:
            return False

    return True


136 137 138
def get_input_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.input_arg_names()
    var = main_program.global_block().var(varname[0])
139
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
140 141 142 143 144 145
    return dist_attr


def get_output_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.output_arg_names()
    var = main_program.global_block().var(varname[0])
146
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
147 148 149 150 151
    return dist_attr


def check_equal_var_dist_attr(serial_dist_attr, dist_attr):
    equal = True
152 153
    if serial_dist_attr.process_mesh != dist_attr.process_mesh or \
        serial_dist_attr.dims_mapping != dist_attr.dims_mapping:
154 155 156 157 158 159 160 161
        equal = False
    return equal


def check_equal_dist_op_attr(dist_context, dist_main_prog, serial_op, dist_ops,
                             dist_op_idx):
    equal = True
    # get serial op's process_mesh and impl_idx
162 163 164
    serial_op_dist_attr = dist_context.get_op_dist_attr_for_program(serial_op)
    serial_process_mesh = serial_op_dist_attr.process_mesh
    serial_impl_idx = serial_op_dist_attr.impl_idx
165 166 167

    # check dist_attr between serial op and dist op
    for i in dist_op_idx:
168
        op_dist_attr = dist_context.get_op_dist_attr_for_program(dist_ops[i])
169 170
        for in_varname in dist_ops[i].desc.input_arg_names():
            in_var = dist_main_prog.global_block().var(in_varname)
171
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
172
                in_var)
173
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
174 175 176 177 178 179
            in_var_dims_mapping = op_dist_attr.get_input_dims_mapping(
                in_varname)
            if tensor_dims_mapping != in_var_dims_mapping:
                equal = False
        for out_varname in dist_ops[i].desc.output_arg_names():
            out_var = dist_main_prog.global_block().var(out_varname)
180
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
181
                out_var)
182
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
183 184 185 186
            out_var_dims_mapping = op_dist_attr.get_output_dims_mapping(
                out_varname)
            if tensor_dims_mapping != out_var_dims_mapping:
                equal = False
187 188
        dist_op_process_mesh = op_dist_attr.process_mesh
        dist_op_impl_idx = op_dist_attr.impl_idx
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        if serial_op.desc.id() == dist_ops[i].desc.id() or \
            serial_process_mesh != dist_op_process_mesh or \
            serial_impl_idx != dist_op_impl_idx:
            equal = False

    return equal


def distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                       dist_context, serial_op_idx,
                                       dist_op_idx):

    equal = True
    serial_ops = serial_main_prog.global_block().ops
    dist_ops = dist_main_prog.global_block().ops

    for i in range(len(serial_op_idx)):
        serial_op = serial_ops[serial_op_idx[i]]
        dist_op_0 = dist_ops[dist_op_idx[i][0]]
        if dist_op_0.type == "c_identity":
            # serial op input's dist_attr
            serial_in_dist_attr = get_input_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # c_identity output's(new var) dist_attr
            identity_out_dist_attr = get_output_var_dist_attr(
                dist_op_0, dist_main_prog, dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_in_dist_attr,
                                              identity_out_dist_attr)
        else:
            # serial op output's dist_attr
            serial_out_dist_attr = get_output_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # dist op output's(new var) dist_attr
            out_dist_attr = get_output_var_dist_attr(dist_op_0, dist_main_prog,
                                                     dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_out_dist_attr,
                                              out_dist_attr)

        # check op's dist_attr 
        equal = check_equal_dist_op_attr(dist_context, dist_main_prog,
                                         serial_op, dist_ops, dist_op_idx[i])

    return equal


def distributed_attr_check_for_program(dist_main_prog, dist_context):
    have_dist_attr = True
    for block in dist_main_prog.blocks:
        for tensor in block.vars.values():
240
            var_dist_attr = dist_context.get_tensor_dist_attr_for_program(
241 242 243 244 245
                tensor)
            if var_dist_attr is None:
                have_dist_attr = False

        for op in block.ops:
246
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
247 248 249 250 251 252
            if op_dist_attr is None:
                have_dist_attr = False

    return have_dist_attr


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
class MLPLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
274
        if _global_parallel_strategy == "mp":
275
            auto.shard_tensor(
276 277 278 279 280
                self.linear0.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
281
            auto.shard_tensor(
282 283 284 285 286
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
287
        elif _global_parallel_strategy == "dp_mp":
288
            auto.shard_tensor(
289 290 291 292 293
                self.linear0.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
294
            auto.shard_tensor(
295 296 297 298 299
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
300 301
        else:
            auto.shard_tensor(
302 303 304 305 306
                self.linear0.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, -1]
                })
307
            auto.shard_tensor(
308 309 310 311 312
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, -1]
                })
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = self.dropout(out)

        return out


def mlp_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="input",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32')

334
        if _global_parallel_strategy == "dp":
335
            auto.shard_tensor(
336 337 338 339 340
                input,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1, -1]
                })
341
        elif _global_parallel_strategy == "dp_mp":
342
            auto.shard_tensor(
343 344 345 346 347
                input,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1, -1]
                })
348 349 350 351 352 353 354 355 356 357 358 359

        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            dropout_ratio=0.1,
            initializer_range=0.02)
        out = mlp(input)
    return train_program, start_program


class TestMLPAutoPartitioner(unittest.TestCase):
    def test_mlp_dp(self):
360 361
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
362
        global _global_process_mesh
363
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

        # parameter initialization 
        var_need_broadcast = []
        self.assertTrue(
385 386 387 388 389 390 391 392 393
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=None,
                dp_parallel_axis=0))
394 395

    def test_mlp_mp(self):
396 397
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
398
        global _global_process_mesh
399
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
428 429
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
430 431 432 433 434 435 436
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
437 438 439 440 441 442 443 444 445
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=0,
                dp_parallel_axis=None))
446

447 448 449 450 451 452 453 454 455 456 457
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

458
    def test_mlp_dp_mp(self):
459 460
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
461 462
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
463
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
492 493
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
494 495 496 497 498 499 500
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
501 502 503 504 505 506 507 508 509
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0))
510

511 512 513 514 515 516 517 518 519 520 521
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

class AttentionLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 sequence_len=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(AttentionLayer, self).__init__()
        self.hidden_size = hidden_size
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.q_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.k_proj = nn.Linear(
            self.kdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.v_proj = nn.Linear(
            self.vdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.out_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)

    def forward(self, input):
559
        if _global_parallel_strategy == "dp":
560
            auto.shard_tensor(
561 562 563 564 565
                input,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1, -1]
                })
566
        elif _global_parallel_strategy == "dp_mp":
567
            auto.shard_tensor(
568 569 570 571 572
                input,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1, -1]
                })
573 574 575 576 577 578 579 580

        q = self.q_proj(input)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(input)
        v = self.v_proj(input)

581
        if _global_parallel_strategy == "mp":
582
            auto.shard_tensor(
583 584 585 586 587
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
588
            auto.shard_tensor(
589 590 591 592 593
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
594
            auto.shard_tensor(
595 596 597 598 599
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
600
        elif _global_parallel_strategy == "dp_mp":
601
            auto.shard_tensor(
602 603 604 605 606
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
607
            auto.shard_tensor(
608 609 610 611 612
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
613
            auto.shard_tensor(
614 615 616 617 618
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
            weights = F.dropout(
                weights,
                self.dropout_ratio,
                training=self.training,
                mode="upscale_in_train")

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)
649
        if _global_parallel_strategy == "mp":
650
            auto.shard_tensor(
651 652 653 654 655
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
656
        elif _global_parallel_strategy == "dp_mp":
657
            auto.shard_tensor(
658 659 660 661 662
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

        return out


def attn_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="query",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32')
        attn = AttentionLayer(
            hidden_size=hidden_size,
            sequence_len=sequence_len,
            intermediate_size=4 * hidden_size,
            num_heads=16,
            dropout_ratio=0.1,
            initializer_range=0.02)
        out = attn(input)

    return train_program, start_program


class TestAttentionAutoPartitioner(unittest.TestCase):
    def test_attn_dp(self):
691 692
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
693
        global _global_process_mesh
694
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)
        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

        # parameter initialization 
        var_need_broadcast = []
        self.assertTrue(
715 716 717 718 719 720 721 722 723
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=None,
                dp_parallel_axis=0))
724 725

    def test_attn_mp(self):
726 727
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
728
        global _global_process_mesh
729
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1, 2, 3])
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
759 760 761 762 763 764
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
765 766 767 768 769 770
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
771 772 773 774 775 776 777 778 779
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=0,
                dp_parallel_axis=None))
780

781 782 783 784 785 786 787 788 789 790 791
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

792
    def test_attn_dp_mp(self):
793 794
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
795 796
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
797
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
827 828 829 830 831 832
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
833 834 835 836 837 838
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
839 840 841 842 843 844 845 846 847
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0))
848

849 850 851 852 853 854 855 856 857 858 859
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930

class DecoderLayer(nn.Layer):
    def __init__(self,
                 vocab_size=32768,
                 hidden_size=1024,
                 sequence_len=512,
                 max_position_embeddings=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(DecoderLayer, self).__init__()
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.max_position_embeddings = max_position_embeddings
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None

        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.word_embeddings = nn.Embedding(
            self.vocab_size,
            self.hidden_size,
            weight_attr=paddle.ParamAttr(
                name="word_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=self.initializer_range)))
        self.position_embeddings = nn.Embedding(
            self.max_position_embeddings,
            self.hidden_size,
            weight_attr=paddle.ParamAttr(
                name="pos_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=self.initializer_range)))

        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
        self.q_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.k_proj = nn.Linear(
            self.kdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.v_proj = nn.Linear(
            self.vdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.out_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)

        intermediate_size = 4 * self.hidden_size
        d_model = self.hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(self.dropout_ratio)
        self.dropout2 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")

    def forward(self, input_ids, position_ids):
931
        if _global_parallel_strategy == "dp":
932
            auto.shard_tensor(
933 934 935 936 937
                input_ids,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
938
        elif _global_parallel_strategy == "dp_mp":
939
            auto.shard_tensor(
940 941 942 943 944
                input_ids,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
945 946 947 948

        input_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

949
        if _global_parallel_strategy == "mp":
950 951
            auto.shard_tensor(
                self.word_embeddings.weight,
952 953 954 955
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
956
        elif _global_parallel_strategy == "dp_mp":
957 958
            auto.shard_tensor(
                self.word_embeddings.weight,
959 960 961 962
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977

        embeddings = input_embeddings + position_embeddings
        embeddings = self.dropout1(embeddings)

        # Pre-norm
        target = self.norm(embeddings)

        # The following is the attention part
        q = self.q_proj(target)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(target)
        v = self.v_proj(target)

978
        if _global_parallel_strategy == "mp":
979
            auto.shard_tensor(
980 981 982 983 984
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
985
            auto.shard_tensor(
986 987 988 989 990
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
991
            auto.shard_tensor(
992 993 994 995 996
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
997
        elif _global_parallel_strategy == "dp_mp":
998
            auto.shard_tensor(
999 1000 1001 1002 1003
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
1004
            auto.shard_tensor(
1005 1006 1007 1008 1009
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
1010
            auto.shard_tensor(
1011 1012 1013 1014 1015
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
            weights = F.dropout(
                weights,
                self.dropout_ratio,
                training=self.training,
                mode="upscale_in_train")

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

1047
        if _global_parallel_strategy == "mp":
1048
            auto.shard_tensor(
1049 1050 1051 1052 1053
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
1054
        elif _global_parallel_strategy == "dp_mp":
1055
            auto.shard_tensor(
1056 1057 1058 1059 1060
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
1061 1062 1063
        else:
            auto.shard_tensor(
                self.out_proj.weight,
1064 1065 1066 1067
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, -1]
                })
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

        # Add residual
        residual = embeddings + self.dropout2(out)

        # Pre-norm
        out0 = self.norm(residual)

        # The following is the MLP part
        out1 = self.linear0(out0)
        out2 = F.gelu(out1, approximate=True)
        out3 = self.linear1(out2)

1080
        if _global_parallel_strategy == "mp":
1081
            auto.shard_tensor(
1082 1083 1084 1085 1086
                self.linear0.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
1087
            auto.shard_tensor(
1088 1089 1090 1091 1092
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
1093
        elif _global_parallel_strategy == "dp_mp":
1094
            auto.shard_tensor(
1095 1096 1097 1098 1099
                self.linear0.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
1100
            auto.shard_tensor(
1101 1102 1103 1104 1105
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

        # Add residual
        final = residual + self.dropout3(out3)
        return final


def decoder_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input_ids = static.data(
            name="input_ids", shape=[batch_size, sequence_len], dtype='int64')
        position_ids = static.data(
            name="position_ids",
            shape=[batch_size, sequence_len],
            dtype='int64')
        decoder = DecoderLayer(
            vocab_size=32768,
            hidden_size=hidden_size,
            sequence_len=sequence_len,
            max_position_embeddings=512,
            intermediate_size=4 * hidden_size,
            num_heads=16,
            dropout_ratio=0.1,
            initializer_range=0.02)
        out = decoder(input_ids, position_ids)

    return train_program, start_program


class TestDecoderLayerPartitioner(unittest.TestCase):
    def test_decoder_dp_mp(self):
1140 1141
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
1142 1143
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
1144
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'c_embedding', 'c_allreduce_sum', 'lookup_table_v2',
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
            'elementwise_add', 'dropout', 'layer_norm', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'c_identity', 'matmul_v2', 'elementwise_add', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'reshape2', 'transpose2', 'matmul', 'softmax', 'dropout',
            'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add', 'dropout', 'elementwise_add',
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout',
            'elementwise_add'
1191 1192 1193 1194 1195 1196 1197 1198 1199
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = sorted([
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ])
        self.assertTrue(
1200 1201 1202 1203 1204 1205 1206 1207 1208
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0))
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr
        serial_op_idx = [0, 5, 9, 11, 23, 28, 31]
        dist_op_idx = [[0, 1], [6, 7], [11, 12], [14, 15], [27, 28], [33, 34],
                       [37, 38]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

1222
    def test_decoder_noparallel(self):
1223 1224
        global _global_parallel_strategy
        _global_parallel_strategy = "None"
1225 1226
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
1227
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]])
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 1
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'lookup_table_v2', 'lookup_table_v2', 'elementwise_add', 'dropout',
1264 1265 1266 1267 1268 1269 1270
            'layer_norm', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'matmul_v2', 'elementwise_add', 'matmul_v2',
            'elementwise_add', 'reshape2', 'transpose2', 'reshape2',
            'transpose2', 'matmul', 'softmax', 'dropout', 'matmul_v2',
            'transpose2', 'reshape2', 'matmul_v2', 'elementwise_add', 'dropout',
            'elementwise_add', 'layer_norm', 'matmul_v2', 'elementwise_add',
            'gelu', 'matmul_v2', 'elementwise_add', 'dropout', 'elementwise_add'
1271 1272 1273 1274 1275 1276 1277 1278 1279
        ]
        self.assertTrue(dist_ops == ref_ops)
        dist_ops = dist_startup_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'gaussian_random', 'gaussian_random', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
            'gaussian_random', 'fill_constant', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            'gaussian_random', 'fill_constant', 'fill_constant',
            'fill_constant', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast'
1290 1291 1292 1293 1294 1295
        ]
        self.assertTrue(dist_ops == ref_ops)


if __name__ == "__main__":
    unittest.main()