test_auto_parallel_partitioner.py 46.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import unittest.mock
from io import StringIO
import numpy as np

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
import paddle.tensor as tensor
from paddle.fluid import layers
from paddle.nn.layer.transformer import _convert_param_attr_to_list
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.utils import check_distributed_attr_for_program
from paddle.distributed.auto_parallel.utils import print_program_with_distributed_attr
from paddle.distributed.auto_parallel.utils import append_distributed_attr_suffix
from paddle.distributed.auto_parallel.context import DistributedContext
from paddle.distributed.auto_parallel.context import set_default_distributed_context
from paddle.distributed import fleet
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.utils import _get_comm_group
from paddle.distributed.auto_parallel.process import new_process_group

paddle.enable_static()
42
_global_parallel_strategy = None
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
_global_process_mesh = None
ROOT_MESH = auto.ProcessMesh([[0, 1, 2, 3], [4, 5, 6, 7]])


def get_programs(annotated_func):
    train_program = static.Program()
    start_program = static.Program()
    dist_context = DistributedContext()
    global _global_process_mesh
    dist_context.set_process_mesh(_global_process_mesh)
    train_program, start_program = annotated_func(train_program, start_program)
    complete_train_program = auto.complete_annotation(train_program,
                                                      dist_context)

    rank_id = 3
    dist_strategy = fleet.DistributedStrategy()
    partitioner = Partitioner(dist_strategy, dist_context, rank_id)
    test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog = partitioner.transpile_forward(
        complete_train_program, start_program)

    return complete_train_program, start_program, test_auto_parallel_dist_main_prog, test_auto_parallel_dist_startup_prog, dist_context


def is_all_parameters_shape_equal(prog1, prog2):

    params1 = prog1.all_parameters()
    params2 = prog2.all_parameters()
    params1.sort(key=lambda x: x.name)
    params2.sort(key=lambda x: x.name)
    shape1 = [tensor.shape for tensor in params1]
    shape2 = [tensor.shape for tensor in params2]

    if len(shape1) != len(shape2):
        return False
    for i in range(len(shape1)):
        if shape1[i] != shape2[i]:
            return False
    return True


def check_tensor_split(prog1, varnames1, prog2, varnames2, axis, nsplit):

    for i in range(len(varnames1)):
        var1 = prog1.global_block().var(varnames1[i])
        var2 = prog2.global_block().var(varnames2[i])
        if var1.shape[axis] != (var2.shape[axis] // nsplit):
            return False

    return True


def initialization_check(mode, dist_context, dist_startup_prog,
95 96
                         serial_startup_prog, var_need_broadcast, process_mesh,
                         mp_parallel_axis, dp_parallel_axis):
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    if 'mp' in mode:
        group_ranks = _get_comm_group(process_mesh.process_group,
                                      process_mesh.topology, mp_parallel_axis,
                                      3)
        mp_ring_id = new_process_group(group_ranks).id
        broadcast_ops = [
            op for op in dist_startup_prog.global_block().ops
            if (op.type == "c_broadcast" and op.desc.attr("ring_id") ==
                mp_ring_id)
        ]
        broadcast_varnames = sorted(
            [op.desc.output_arg_names()[0] for op in broadcast_ops])
        if broadcast_varnames != var_need_broadcast:
            return False

    if 'dp' in mode:
        group_ranks = _get_comm_group(process_mesh.process_group,
                                      process_mesh.topology, dp_parallel_axis,
                                      3)
        dp_ring_id = new_process_group(group_ranks).id
        nparam = len(serial_startup_prog.all_parameters())
        nbroadcast_dp = len([
            op for op in dist_startup_prog.global_block().ops
            if (op.type == "c_broadcast" and op.desc.attr("ring_id") ==
                dp_ring_id)
        ])
        if nparam != nbroadcast_dp:
            return False

    if "dp" in mode and 'mp' in mode:
        nbroadcast = len([
            op for op in dist_startup_prog.global_block().ops
            if op.type == "c_broadcast"
        ])
        if len(var_need_broadcast) + nbroadcast_dp != nbroadcast:
            return False

    return True


137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
def get_input_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.input_arg_names()
    var = main_program.global_block().var(varname[0])
    dist_attr = dist_context.get_tensor_distributed_attr_for_program(var)
    return dist_attr


def get_output_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.output_arg_names()
    var = main_program.global_block().var(varname[0])
    dist_attr = dist_context.get_tensor_distributed_attr_for_program(var)
    return dist_attr


def check_equal_var_dist_attr(serial_dist_attr, dist_attr):
    equal = True
    if serial_dist_attr.get_process_mesh() != dist_attr.get_process_mesh() or \
        serial_dist_attr.is_parameter() != dist_attr.is_parameter() or \
        serial_dist_attr.get_dims_mapping() != dist_attr.get_dims_mapping():
        equal = False
    return equal


def check_equal_dist_op_attr(dist_context, dist_main_prog, serial_op, dist_ops,
                             dist_op_idx):
    equal = True
    # get serial op's process_mesh and impl_idx
    serial_op_dist_attr = dist_context.get_op_distributed_attr_for_program(
        serial_op)
    serial_process_mesh = serial_op_dist_attr.get_process_mesh()
    serial_impl_idx = serial_op_dist_attr.get_impl_idx()

    # check dist_attr between serial op and dist op
    for i in dist_op_idx:
        op_dist_attr = dist_context.get_op_distributed_attr_for_program(
            dist_ops[i])
        for in_varname in dist_ops[i].desc.input_arg_names():
            in_var = dist_main_prog.global_block().var(in_varname)
            tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_program(
                in_var)
            tensor_dims_mapping = tensor_dist_attr.get_dims_mapping()
            in_var_dims_mapping = op_dist_attr.get_input_dims_mapping(
                in_varname)
            if tensor_dims_mapping != in_var_dims_mapping:
                equal = False
        for out_varname in dist_ops[i].desc.output_arg_names():
            out_var = dist_main_prog.global_block().var(out_varname)
            tensor_dist_attr = dist_context.get_tensor_distributed_attr_for_program(
                out_var)
            tensor_dims_mapping = tensor_dist_attr.get_dims_mapping()
            out_var_dims_mapping = op_dist_attr.get_output_dims_mapping(
                out_varname)
            if tensor_dims_mapping != out_var_dims_mapping:
                equal = False

        dist_op_process_mesh = op_dist_attr.get_process_mesh()
        dist_op_impl_idx = op_dist_attr.get_impl_idx()
        if serial_op.desc.id() == dist_ops[i].desc.id() or \
            serial_process_mesh != dist_op_process_mesh or \
            serial_impl_idx != dist_op_impl_idx:
            equal = False

    return equal


def distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                       dist_context, serial_op_idx,
                                       dist_op_idx):

    equal = True
    serial_ops = serial_main_prog.global_block().ops
    dist_ops = dist_main_prog.global_block().ops

    for i in range(len(serial_op_idx)):
        serial_op = serial_ops[serial_op_idx[i]]
        dist_op_0 = dist_ops[dist_op_idx[i][0]]
        if dist_op_0.type == "c_identity":
            # serial op input's dist_attr
            serial_in_dist_attr = get_input_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # c_identity output's(new var) dist_attr
            identity_out_dist_attr = get_output_var_dist_attr(
                dist_op_0, dist_main_prog, dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_in_dist_attr,
                                              identity_out_dist_attr)
        else:
            # serial op output's dist_attr
            serial_out_dist_attr = get_output_var_dist_attr(
                serial_op, serial_main_prog, dist_context)
            # dist op output's(new var) dist_attr
            out_dist_attr = get_output_var_dist_attr(dist_op_0, dist_main_prog,
                                                     dist_context)
            # check var dist_attr
            equal = check_equal_var_dist_attr(serial_out_dist_attr,
                                              out_dist_attr)

        # check op's dist_attr 
        equal = check_equal_dist_op_attr(dist_context, dist_main_prog,
                                         serial_op, dist_ops, dist_op_idx[i])

    return equal


def distributed_attr_check_for_program(dist_main_prog, dist_context):
    have_dist_attr = True
    for block in dist_main_prog.blocks:
        for tensor in block.vars.values():
            var_dist_attr = dist_context.get_tensor_distributed_attr_for_program(
                tensor)
            if var_dist_attr is None:
                have_dist_attr = False

        for op in block.ops:
            op_dist_attr = dist_context.get_op_distributed_attr_for_program(op)
            if op_dist_attr is None:
                have_dist_attr = False

    return have_dist_attr


258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
class MLPLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
279
        if _global_parallel_strategy == "mp":
280 281 282 283
            auto.shard_tensor(
                self.linear0.weight, _global_process_mesh, dim_mapping=[-1, 0])
            auto.shard_tensor(
                self.linear1.weight, _global_process_mesh, dim_mapping=[0, -1])
284
        elif _global_parallel_strategy == "dp_mp":
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            auto.shard_tensor(
                self.linear0.weight, _global_process_mesh, dim_mapping=[-1, 1])
            auto.shard_tensor(
                self.linear1.weight, _global_process_mesh, dim_mapping=[1, -1])
        else:
            auto.shard_tensor(
                self.linear0.weight, _global_process_mesh,
                dim_mapping=[-1, -1])
            auto.shard_tensor(
                self.linear1.weight, _global_process_mesh,
                dim_mapping=[-1, -1])

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = self.dropout(out)

        return out


def mlp_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="input",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32')

317
        if _global_parallel_strategy == "dp":
318 319
            auto.shard_tensor(
                input, _global_process_mesh, dim_mapping=[0, -1, -1])
320
        elif _global_parallel_strategy == "dp_mp":
321 322 323 324 325 326 327 328 329 330 331 332 333 334
            auto.shard_tensor(
                input, _global_process_mesh, dim_mapping=[0, -1, -1])

        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            dropout_ratio=0.1,
            initializer_range=0.02)
        out = mlp(input)
    return train_program, start_program


class TestMLPAutoPartitioner(unittest.TestCase):
    def test_mlp_dp(self):
335 336
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], parent=ROOT_MESH)

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

        # parameter initialization 
        var_need_broadcast = []
        self.assertTrue(
361 362 363 364 365 366 367 368 369
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=None,
                dp_parallel_axis=0))
370 371

    def test_mlp_mp(self):
372 373
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], parent=ROOT_MESH)
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
405 406
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
407 408 409 410 411 412 413
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
414 415 416 417 418 419 420 421 422
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=0,
                dp_parallel_axis=None))
423

424 425 426 427 428 429 430 431 432 433 434
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

435
    def test_mlp_dp_mp(self):
436 437
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], parent=ROOT_MESH)
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            mlp_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_1.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
469 470
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout'
471 472 473 474 475 476 477
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization
        var_need_broadcast = sorted(
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0'])
        self.assertTrue(
478 479 480 481 482 483 484 485 486
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0))
487

488 489 490 491 492 493 494 495 496 497 498
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

class AttentionLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 sequence_len=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(AttentionLayer, self).__init__()
        self.hidden_size = hidden_size
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.q_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.k_proj = nn.Linear(
            self.kdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.v_proj = nn.Linear(
            self.vdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.out_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)

    def forward(self, input):
536
        if _global_parallel_strategy == "dp":
537 538
            auto.shard_tensor(
                input, _global_process_mesh, dim_mapping=[0, -1, -1])
539
        elif _global_parallel_strategy == "dp_mp":
540 541 542 543 544 545 546 547 548 549
            auto.shard_tensor(
                input, _global_process_mesh, dim_mapping=[0, -1, -1])

        q = self.q_proj(input)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(input)
        v = self.v_proj(input)

550
        if _global_parallel_strategy == "mp":
551 552 553 554 555 556
            auto.shard_tensor(
                self.q_proj.weight, _global_process_mesh, dim_mapping=[-1, 0])
            auto.shard_tensor(
                self.k_proj.weight, _global_process_mesh, dim_mapping=[-1, 0])
            auto.shard_tensor(
                self.v_proj.weight, _global_process_mesh, dim_mapping=[-1, 0])
557
        elif _global_parallel_strategy == "dp_mp":
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
            auto.shard_tensor(
                self.q_proj.weight, _global_process_mesh, dim_mapping=[-1, 1])
            auto.shard_tensor(
                self.k_proj.weight, _global_process_mesh, dim_mapping=[-1, 1])
            auto.shard_tensor(
                self.v_proj.weight, _global_process_mesh, dim_mapping=[-1, 1])

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
            weights = F.dropout(
                weights,
                self.dropout_ratio,
                training=self.training,
                mode="upscale_in_train")

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)
594
        if _global_parallel_strategy == "mp":
595 596 597
            auto.shard_tensor(
                self.out_proj.weight, _global_process_mesh,
                dim_mapping=[0, -1])
598
        elif _global_parallel_strategy == "dp_mp":
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
            auto.shard_tensor(
                self.out_proj.weight, _global_process_mesh,
                dim_mapping=[1, -1])

        return out


def attn_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="query",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32')
        attn = AttentionLayer(
            hidden_size=hidden_size,
            sequence_len=sequence_len,
            intermediate_size=4 * hidden_size,
            num_heads=16,
            dropout_ratio=0.1,
            initializer_range=0.02)
        out = attn(input)

    return train_program, start_program


class TestAttentionAutoPartitioner(unittest.TestCase):
    def test_attn_dp(self):
630 631
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], parent=ROOT_MESH)

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)
        # parameter should not be partitioned
        self.assertTrue(
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog))
        self.assertTrue(
            is_all_parameters_shape_equal(serial_startup_prog,
                                          dist_startup_prog))

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

        # parameter initialization 
        var_need_broadcast = []
        self.assertTrue(
655 656 657 658 659 660 661 662 663
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=None,
                dp_parallel_axis=0))
664 665

    def test_attn_mp(self):
666 667
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], parent=ROOT_MESH)

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
700 701 702 703 704 705
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
706 707 708 709 710 711
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
712 713 714 715 716 717 718 719 720
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=0,
                dp_parallel_axis=None))
721

722 723 724 725 726 727 728 729 730 731 732
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

733
    def test_attn_dp_mp(self):
734 735
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], parent=ROOT_MESH)

        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            attn_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = ['linear_3.b_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
768 769 770 771 772 773
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'c_identity', 'matmul_v2', 'elementwise_add',
            'c_identity', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'reshape2', 'transpose2', 'matmul', 'softmax',
            'dropout', 'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add'
774 775 776 777 778 779
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
780 781 782 783 784 785 786 787 788
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0))
789

790 791 792 793 794 795 796 797 798 799 800
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

class DecoderLayer(nn.Layer):
    def __init__(self,
                 vocab_size=32768,
                 hidden_size=1024,
                 sequence_len=512,
                 max_position_embeddings=512,
                 intermediate_size=4 * 1024,
                 num_heads=16,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(DecoderLayer, self).__init__()
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.max_position_embeddings = max_position_embeddings
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None

        self.head_dim = self.embed_dim // self.num_heads
        assert self.head_dim * self.num_heads == self.embed_dim, \
            "embed_dim must be divisible by num_heads"
        self.word_embeddings = nn.Embedding(
            self.vocab_size,
            self.hidden_size,
            weight_attr=paddle.ParamAttr(
                name="word_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=self.initializer_range)))
        self.position_embeddings = nn.Embedding(
            self.max_position_embeddings,
            self.hidden_size,
            weight_attr=paddle.ParamAttr(
                name="pos_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=self.initializer_range)))

        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
        self.q_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.k_proj = nn.Linear(
            self.kdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.v_proj = nn.Linear(
            self.vdim, self.embed_dim, weight_attr, bias_attr=bias_attr)
        self.out_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr)

        intermediate_size = 4 * self.hidden_size
        d_model = self.hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=self.initializer_range))
        bias_attr = None
        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(self.dropout_ratio)
        self.dropout2 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")

    def forward(self, input_ids, position_ids):
872
        if _global_parallel_strategy == "dp":
873 874
            auto.shard_tensor(
                input_ids, _global_process_mesh, dim_mapping=[0, -1])
875
        elif _global_parallel_strategy == "dp_mp":
876 877 878 879 880 881
            auto.shard_tensor(
                input_ids, _global_process_mesh, dim_mapping=[0, -1])

        input_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

882
        if _global_parallel_strategy == "mp":
883 884 885 886
            auto.shard_tensor(
                self.word_embeddings.weight,
                _global_process_mesh,
                dim_mapping=[0, -1])
887
        elif _global_parallel_strategy == "dp_mp":
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
            auto.shard_tensor(
                self.word_embeddings.weight,
                _global_process_mesh,
                dim_mapping=[1, -1])

        embeddings = input_embeddings + position_embeddings
        embeddings = self.dropout1(embeddings)

        # Pre-norm
        target = self.norm(embeddings)

        # The following is the attention part
        q = self.q_proj(target)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(target)
        v = self.v_proj(target)

907
        if _global_parallel_strategy == "mp":
908 909 910 911 912 913
            auto.shard_tensor(
                self.q_proj.weight, _global_process_mesh, dim_mapping=[-1, 0])
            auto.shard_tensor(
                self.k_proj.weight, _global_process_mesh, dim_mapping=[-1, 0])
            auto.shard_tensor(
                self.v_proj.weight, _global_process_mesh, dim_mapping=[-1, 0])
914
        elif _global_parallel_strategy == "dp_mp":
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
            auto.shard_tensor(
                self.q_proj.weight, _global_process_mesh, dim_mapping=[-1, 1])
            auto.shard_tensor(
                self.k_proj.weight, _global_process_mesh, dim_mapping=[-1, 1])
            auto.shard_tensor(
                self.v_proj.weight, _global_process_mesh, dim_mapping=[-1, 1])

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
            weights = F.dropout(
                weights,
                self.dropout_ratio,
                training=self.training,
                mode="upscale_in_train")

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

952
        if _global_parallel_strategy == "mp":
953 954 955
            auto.shard_tensor(
                self.out_proj.weight, _global_process_mesh,
                dim_mapping=[0, -1])
956
        elif _global_parallel_strategy == "dp_mp":
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            auto.shard_tensor(
                self.out_proj.weight, _global_process_mesh,
                dim_mapping=[1, -1])
        else:
            auto.shard_tensor(
                self.out_proj.weight,
                _global_process_mesh,
                dim_mapping=[-1, -1])

        # Add residual
        residual = embeddings + self.dropout2(out)

        # Pre-norm
        out0 = self.norm(residual)

        # The following is the MLP part
        out1 = self.linear0(out0)
        out2 = F.gelu(out1, approximate=True)
        out3 = self.linear1(out2)

977
        if _global_parallel_strategy == "mp":
978 979 980 981
            auto.shard_tensor(
                self.linear0.weight, _global_process_mesh, dim_mapping=[-1, 0])
            auto.shard_tensor(
                self.linear1.weight, _global_process_mesh, dim_mapping=[0, -1])
982
        elif _global_parallel_strategy == "dp_mp":
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            auto.shard_tensor(
                self.linear0.weight, _global_process_mesh, dim_mapping=[-1, 1])
            auto.shard_tensor(
                self.linear1.weight, _global_process_mesh, dim_mapping=[1, -1])

        # Add residual
        final = residual + self.dropout3(out3)
        return final


def decoder_pretrain_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input_ids = static.data(
            name="input_ids", shape=[batch_size, sequence_len], dtype='int64')
        position_ids = static.data(
            name="position_ids",
            shape=[batch_size, sequence_len],
            dtype='int64')
        decoder = DecoderLayer(
            vocab_size=32768,
            hidden_size=hidden_size,
            sequence_len=sequence_len,
            max_position_embeddings=512,
            intermediate_size=4 * hidden_size,
            num_heads=16,
            dropout_ratio=0.1,
            initializer_range=0.02)
        out = decoder(input_ids, position_ids)

    return train_program, start_program


class TestDecoderLayerPartitioner(unittest.TestCase):
    def test_decoder_dp_mp(self):
1021 1022
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], parent=ROOT_MESH)
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 4
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'c_embedding', 'c_allreduce_sum', 'lookup_table_v2',
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
            'elementwise_add', 'dropout', 'layer_norm', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'c_identity', 'matmul_v2', 'elementwise_add', 'c_identity',
            'matmul_v2', 'elementwise_add', 'reshape2', 'transpose2',
            'reshape2', 'transpose2', 'matmul', 'softmax', 'dropout',
            'matmul_v2', 'transpose2', 'reshape2', 'matmul_v2',
            'c_allreduce_sum', 'elementwise_add', 'dropout', 'elementwise_add',
            'layer_norm', 'c_identity', 'matmul_v2', 'elementwise_add', 'gelu',
            'matmul_v2', 'c_allreduce_sum', 'elementwise_add', 'dropout',
            'elementwise_add'
1072 1073 1074 1075 1076 1077 1078 1079 1080
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization 
        var_need_broadcast = sorted([
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ])
        self.assertTrue(
1081 1082 1083 1084 1085 1086 1087 1088 1089
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0))
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
            distributed_attr_check_for_program(dist_main_prog, dist_context))
        # check distribured attr
        serial_op_idx = [0, 5, 9, 11, 23, 28, 31]
        dist_op_idx = [[0, 1], [6, 7], [11, 12], [14, 15], [27, 28], [33, 34],
                       [37, 38]]
        self.assertTrue(
            distributed_attr_check_for_dist_op(serial_main_prog, dist_main_prog,
                                               dist_context, serial_op_idx,
                                               dist_op_idx))

1103
    def test_decoder_noparallel(self):
1104 1105
        global _global_parallel_strategy
        _global_parallel_strategy = "None"
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], parent=ROOT_MESH)
        serial_main_prog, serial_startup_prog, dist_main_prog, dist_startup_prog, dist_context = get_programs(
            decoder_pretrain_forward)

        # param should be partition
        nrank = 1
        # col parallel
        weights = [
            'linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0', 'linear_4.w_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 1, nrank))
        weights = [
            'linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0', 'linear_4.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, nrank))
        weights = [
            'linear_3.b_0', 'pos_embeddings', 'layer_norm_0.b_0',
            'layer_norm_0.w_0', 'linear_5.b_0'
        ]
        self.assertTrue(
            check_tensor_split(dist_main_prog, weights, serial_main_prog,
                               weights, 0, 1))

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'lookup_table_v2', 'lookup_table_v2', 'elementwise_add', 'dropout',
1145 1146 1147 1148 1149 1150 1151
            'layer_norm', 'matmul_v2', 'elementwise_add', 'reshape2',
            'transpose2', 'matmul_v2', 'elementwise_add', 'matmul_v2',
            'elementwise_add', 'reshape2', 'transpose2', 'reshape2',
            'transpose2', 'matmul', 'softmax', 'dropout', 'matmul_v2',
            'transpose2', 'reshape2', 'matmul_v2', 'elementwise_add', 'dropout',
            'elementwise_add', 'layer_norm', 'matmul_v2', 'elementwise_add',
            'gelu', 'matmul_v2', 'elementwise_add', 'dropout', 'elementwise_add'
1152 1153 1154 1155 1156 1157 1158 1159 1160
        ]
        self.assertTrue(dist_ops == ref_ops)
        dist_ops = dist_startup_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
            'gaussian_random', 'gaussian_random', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
            'gaussian_random', 'fill_constant', 'gaussian_random',
            'fill_constant', 'gaussian_random', 'fill_constant',
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
            'gaussian_random', 'fill_constant', 'fill_constant',
            'fill_constant', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast', 'c_broadcast', 'c_broadcast', 'c_broadcast',
            'c_broadcast'
1171 1172 1173 1174 1175 1176
        ]
        self.assertTrue(dist_ops == ref_ops)


if __name__ == "__main__":
    unittest.main()