test_split_op.py 17.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import paddle
Y
Yancey 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
Y
Yancey 已提交
22 23 24 25


class TestSplitOp(OpTest):
    def setUp(self):
T
fix ut  
typhoonzero 已提交
26
        self._set_op_type()
27
        self.dtype = self.get_dtype()
Y
Yancey1989 已提交
28
        axis = 1
29 30 31 32 33 34 35 36 37 38 39 40
        if self.dtype == np.uint16:
            x = np.random.random((4, 5, 6)).astype(np.float32)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': convert_float_to_uint16(x)}
            self.outputs = {'Out': [('out%d' % i, convert_float_to_uint16(out[i])) \
                for i in range(len(out))]}
        else:
            x = np.random.random((4, 5, 6)).astype(self.dtype)
            out = np.split(x, [2, 3], axis)
            self.inputs = {'X': x}
            self.outputs = {'Out': [('out%d' % i, out[i]) \
                for i in range(len(out))]}
Y
Yancey1989 已提交
41
        self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
Y
Yancey 已提交
42

43
    def get_dtype(self):
44
        return "float64"
45

T
typhoonzero 已提交
46 47 48
    def _set_op_type(self):
        self.op_type = "split"

Y
Yancey 已提交
49 50 51
    def test_check_output(self):
        self.check_output()

Y
Yancey1989 已提交
52 53
    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])
Y
Yancey 已提交
54 55


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
# test with attr(num)
class TestSplitOp_2(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
81
        return "float64"
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {
            'X': self.x,
            'AxisTensor': np.array([self.axis]).astype("int32")
        }
        self.attrs = {'sections': self.sections, 'num': self.num}

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
117
        return "float64"
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}

        sections_tensor = []
        for index, ele in enumerate(self.sections):
            sections_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs['SectionsTensorList'] = sections_tensor

        self.attrs = {
            'axis': self.axis,
            'sections': self.sections_infer,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 1
        self.sections = [2, 1, 2]
        self.sections_infer = [-1, -1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
163
        return "float64"
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitOp_unk_section(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = [2, 1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
199
        return "float64"
200 201 202 203 204 205 206 207 208 209 210

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


T
typhoonzero 已提交
211 212 213 214 215
class TestSplitByrefOp(OpTest):
    def _set_op_type(self):
        self.op_type = "split_byref"


216 217 218 219
#----------------Split Fp16----------------


def create_test_fp16(parent):
220 221
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
222 223 224 225 226 227 228 229 230 231 232 233 234 235
    class TestSplitFp16(parent):
        def get_dtype(self):
            return np.float16

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestSplitFp16.__name__ = cls_name
    globals()[cls_name] = TestSplitFp16


create_test_fp16(TestSplitOp)

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#----------------Split Bf16----------------


def create_test_bf16(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestSplitBf16(parent):
        def get_dtype(self):
            return np.uint16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestSplitBf16.__name__ = cls_name
    globals()[cls_name] = TestSplitBf16


create_test_bf16(TestSplitOp)

260

261
class TestSplitAPI(unittest.TestCase):
262 263
    def test_api(self):
        input_1 = np.random.random([4, 5, 6]).astype("int32")
264 265 266
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
267 268 269 270
        x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
        x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')

        out_0, out_1, out_2 = fluid.layers.split(
271 272 273 274
            input=x_1,
            num_or_sections=[positive_2_int64, positive_1_int32, -1],
            dim=positive_1_int64)

275
        out_3, out_4, out_5 = fluid.layers.split(
276
            input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32)
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        fluid.layers.split(input=x_2, num_or_sections=2, dim=2)

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1,
                  "x_2": input_1},
            fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5])

        out = np.split(input_1, [2, 3], 1)
        assert np.array_equal(res_0, out[0])
        assert np.array_equal(res_1, out[1])
        assert np.array_equal(res_2, out[2])
        assert np.array_equal(res_3, out[0])
        assert np.array_equal(res_4, out[1])
        assert np.array_equal(res_5, out[2])


295
class TestSplitOpError(unittest.TestCase):
296 297 298 299 300 301 302 303 304
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axis_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
                fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type)

305 306 307 308 309 310 311 312
            # The type of axis in split_op should be int or Variable.
            def test_axis_variable_type():
                x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9')
                x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10')
                fluid.layers.split(input=x9, num_or_sections=2, dim=x10)

            self.assertRaises(TypeError, test_axis_variable_type)

313 314 315 316 317 318 319
            # The type of num_or_sections in split_op should be int, tuple or list.
            def test_num_or_sections_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
                fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type)

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
            def test_num_or_sections_type_tensor():
                x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
                paddle.split(input=x7, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type_tensor)

            def test_axis_type_tensor():
                x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
                paddle.split(input=x8, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)


class API_TestSplit(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
338
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
            r0, r1, r2, = exe.run(feed={"data1": input1,
                                        "data2": input2},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestSplit2(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
356
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            r0, r1, r2, = exe.run(feed={"data1": input1},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestSplit3(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
372
            x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
373 374 375 376 377 378 379 380 381 382 383 384 385 386
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))


class API_TestSplit4(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            index = fluid.layers.data('index', shape=[1], dtype='int32')
387
            x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
388 389 390 391 392 393 394 395 396 397 398 399 400
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            input2 = np.array([7]).astype('int32')
            r0, r1 = exe.run(feed={"data": input1,
                                   "index": input2},
                             fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))


class API_TestDygraphSplit(unittest.TestCase):
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_out_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[num1, 2, 2], axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_axis_tensor_input(self):
446 447 448 449
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
450 451 452
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[2, 2, 2], axis=num1)
453 454 455 456 457 458 459 460
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
class API_TestEmptySplit(unittest.TestCase):
    def test_axis_input_empty_section(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([8, 6, 6]).astype("float32")
            # input is a variable which shape is [8, 6, 6]
            input = paddle.to_tensor(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=[5, 0, 3])
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, [
                5,
                5,
            ])
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))


Y
Yancey 已提交
481 482
if __name__ == '__main__':
    unittest.main()