test_split_op.py 15.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import paddle
Y
Yancey 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
Y
Yancey 已提交
22 23 24 25


class TestSplitOp(OpTest):
    def setUp(self):
T
fix ut  
typhoonzero 已提交
26
        self._set_op_type()
27
        self.dtype = self.get_dtype()
Y
Yancey1989 已提交
28
        axis = 1
29
        x = np.random.random((4, 5, 6)).astype(self.dtype)
Y
Yancey1989 已提交
30
        out = np.split(x, [2, 3], axis)
Y
Yancey 已提交
31
        self.inputs = {'X': x}
Y
Yancey1989 已提交
32
        self.attrs = {'axis': axis, 'sections': [2, 1, 2]}
Y
Yancey 已提交
33
        self.outputs = {'Out': [('out%d' % i, out[i]) \
34
            for i in range(len(out))]}
Y
Yancey 已提交
35

36
    def get_dtype(self):
37
        return "float64"
38

T
typhoonzero 已提交
39 40 41
    def _set_op_type(self):
        self.op_type = "split"

Y
Yancey 已提交
42 43 44
    def test_check_output(self):
        self.check_output()

Y
Yancey1989 已提交
45 46
    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])
Y
Yancey 已提交
47 48


49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
# test with attr(num)
class TestSplitOp_2(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
74
        return "float64"
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(axis) is Tensor
class TestSplitOp_AxisTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {
            'X': self.x,
            'AxisTensor': np.array([self.axis]).astype("int32")
        }
        self.attrs = {'sections': self.sections, 'num': self.num}

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = []
        self.num = 3
        self.indices_or_sections = 3

    def get_dtype(self):
110
        return "float64"
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


# attr(sections) is list containing Tensor
class TestSplitOp_SectionsTensor(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}

        sections_tensor = []
        for index, ele in enumerate(self.sections):
            sections_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs['SectionsTensorList'] = sections_tensor

        self.attrs = {
            'axis': self.axis,
            'sections': self.sections_infer,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 1
        self.sections = [2, 1, 2]
        self.sections_infer = [-1, -1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
156
        return "float64"
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitOp_unk_section(OpTest):
    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.init_data()
        self.inputs = {'X': self.x}
        self.attrs = {
            'axis': self.axis,
            'sections': self.sections,
            'num': self.num
        }

        out = np.split(self.x, self.indices_or_sections, self.axis)
        self.outputs = {'Out': [('out%d' % i, out[i]) \
                                for i in range(len(out))]}

    def init_data(self):
        self.x = np.random.random((4, 5, 6)).astype(self.dtype)
        self.axis = 2
        self.sections = [2, 1, -1]
        self.num = 0
        self.indices_or_sections = [2, 3]

    def get_dtype(self):
192
        return "float64"
193 194 195 196 197 198 199 200 201 202 203

    def _set_op_type(self):
        self.op_type = "split"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


T
typhoonzero 已提交
204 205 206 207 208
class TestSplitByrefOp(OpTest):
    def _set_op_type(self):
        self.op_type = "split_byref"


209 210 211 212
#----------------Split Fp16----------------


def create_test_fp16(parent):
213 214
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
215 216 217 218 219 220 221 222 223 224 225 226 227 228
    class TestSplitFp16(parent):
        def get_dtype(self):
            return np.float16

        def test_check_grad(self):
            pass

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestSplitFp16.__name__ = cls_name
    globals()[cls_name] = TestSplitFp16


create_test_fp16(TestSplitOp)

229

230
class TestSplitAPI(unittest.TestCase):
231 232
    def test_api(self):
        input_1 = np.random.random([4, 5, 6]).astype("int32")
233 234 235
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
236 237 238 239
        x_1 = fluid.data(shape=[4, 5, 6], dtype='int32', name='x_1')
        x_2 = fluid.data(shape=[4, 5, None], dtype='int32', name='x_2')

        out_0, out_1, out_2 = fluid.layers.split(
240 241 242 243
            input=x_1,
            num_or_sections=[positive_2_int64, positive_1_int32, -1],
            dim=positive_1_int64)

244
        out_3, out_4, out_5 = fluid.layers.split(
245
            input=x_1, num_or_sections=[2, 1, 2], dim=positive_1_int32)
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        fluid.layers.split(input=x_2, num_or_sections=2, dim=2)

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_0, res_1, res_2, res_3, res_4, res_5] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1,
                  "x_2": input_1},
            fetch_list=[out_0, out_1, out_2, out_3, out_4, out_5])

        out = np.split(input_1, [2, 3], 1)
        assert np.array_equal(res_0, out[0])
        assert np.array_equal(res_1, out[1])
        assert np.array_equal(res_2, out[2])
        assert np.array_equal(res_3, out[0])
        assert np.array_equal(res_4, out[1])
        assert np.array_equal(res_5, out[2])


264
class TestSplitOpError(unittest.TestCase):
265 266 267 268 269 270 271 272 273
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The type of axis in split_op should be int or Variable.
            def test_axis_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x3')
                fluid.layers.split(input=x6, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type)

274 275 276 277 278 279 280 281
            # The type of axis in split_op should be int or Variable.
            def test_axis_variable_type():
                x9 = fluid.layers.data(shape=[4], dtype='float16', name='x9')
                x10 = fluid.layers.data(shape=[1], dtype='float16', name='x10')
                fluid.layers.split(input=x9, num_or_sections=2, dim=x10)

            self.assertRaises(TypeError, test_axis_variable_type)

282 283 284 285 286 287 288
            # The type of num_or_sections in split_op should be int, tuple or list.
            def test_num_or_sections_type():
                x6 = fluid.layers.data(shape=[4], dtype='float16', name='x4')
                fluid.layers.split(input=x6, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type)

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
            def test_num_or_sections_type_tensor():
                x7 = fluid.layers.data(shape=[4], dtype='float16', name='x5')
                paddle.split(input=x7, num_or_sections=2.1, dim=3)

            self.assertRaises(TypeError, test_num_or_sections_type_tensor)

            def test_axis_type_tensor():
                x8 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
                paddle.split(input=x8, num_or_sections=2, dim=3.2)

            self.assertRaises(TypeError, test_axis_type_tensor)


class API_TestSplit(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
            data2 = fluid.layers.data('data2', shape=[1], dtype='int32')
307
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=data2)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            input2 = np.array([2]).astype('int32')
            r0, r1, r2, = exe.run(feed={"data1": input1,
                                        "data2": input2},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestSplit2(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data1 = fluid.layers.data('data1', shape=[4, 6, 6], dtype='float64')
325
            x0, x1, x2 = paddle.split(data1, num_or_sections=3, axis=2)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([4, 6, 6]).astype('float64')
            r0, r1, r2, = exe.run(feed={"data1": input1},
                                  fetch_list=[x0, x1, x2])
            ex_x0, ex_x1, ex_x2 = np.split(input1, 3, axis=2)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))
            self.assertTrue(np.allclose(ex_x2, r2))


class API_TestSplit3(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
341
            x0, x1 = paddle.split(data, num_or_sections=(3, 7), axis=1)
342 343 344 345 346 347 348 349 350 351 352 353 354 355
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            r0, r1 = exe.run(feed={"data": input1}, fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))


class API_TestSplit4(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            data = fluid.layers.data('data', shape=[-1, 10], dtype='float64')
            index = fluid.layers.data('index', shape=[1], dtype='int32')
356
            x0, x1 = paddle.split(data, num_or_sections=(3, index), axis=1)
357 358 359 360 361 362 363 364 365 366 367 368 369
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            input1 = np.random.random([1, 10]).astype('float64')
            input2 = np.array([7]).astype('int32')
            r0, r1 = exe.run(feed={"data": input1,
                                   "index": input2},
                             fetch_list=[x0, x1])
            ex_x0, ex_x1 = np.split(input1, (3, ), axis=1)
            self.assertTrue(np.allclose(ex_x0, r0))
            self.assertTrue(np.allclose(ex_x1, r1))


class API_TestDygraphSplit(unittest.TestCase):
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    def test_out1(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_out2(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("bool")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            x0, x1, x2 = paddle.split(input, num_or_sections=3, axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_out_tensor_input(self):
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
            num1 = paddle.full(shape=[1], fill_value=2, dtype='int32')
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[num1, 2, 2], axis=1)
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

    def test_axis_tensor_input(self):
415 416 417 418
        with fluid.dygraph.guard():
            input_1 = np.random.random([4, 6, 6]).astype("int32")
            # input is a variable which shape is [4, 6, 6]
            input = fluid.dygraph.to_variable(input_1)
419 420 421
            num1 = paddle.full(shape=[1], fill_value=1, dtype='int32')
            x0, x1, x2 = paddle.split(
                input, num_or_sections=[2, 2, 2], axis=num1)
422 423 424 425 426 427 428 429
            x0_out = x0.numpy()
            x1_out = x1.numpy()
            x2_out = x2.numpy()
            ex_x0, ex_x1, ex_x2 = np.split(input_1, 3, axis=1)
        self.assertTrue(np.allclose(ex_x0, x0_out))
        self.assertTrue(np.allclose(ex_x1, x1_out))
        self.assertTrue(np.allclose(ex_x2, x2_out))

430

Y
Yancey 已提交
431 432
if __name__ == '__main__':
    unittest.main()