pool_op.cc 24.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16
#include <unordered_map>
17 18 19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27 28
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
29 30
  int output_size;
  if (!ceil_mode) {
31 32
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
33 34
  } else {
    output_size =
35 36 37
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
38
  }
39 40
  PADDLE_ENFORCE_GT(
      output_size, 0,
41 42 43 44
      "ShapeError: the output size must be greater than 0. But received: "
      "output_size = %d due to the settings of input_size(%d), padding(%d,%d), "
      "k_size(%d) and stride(%d). Please check again!",
      output_size, input_size, padding_1, padding_2, filter_size, stride);
45 46 47
  return output_size;
}

C
chengduo 已提交
48
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
49 50 51 52
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                    "Out(Output) of Pooling should not be null.");
53

C
chengduoZH 已提交
54
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
55 56 57
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
58
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
59
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
60 61 62 63
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
64

65
  auto in_x_dims = ctx->GetInputDim("X");
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
      "ShapeError: the input of Op(pool) should be 4-D or 5-D Tensor. But "
      "received: %u-D Tensor and it's shape is [%s].",
      in_x_dims.size(), in_x_dims);

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
      "ShapeError: the dimension of input minus the size of "
      "Attr(ksize) must be euqal to 2 in Op(pool). "
      "But received: the dimension of input minus the size "
      "of Attr(ksize) is %d, the "
      "input's dimension is %d, the shape of input "
      "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
      in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
      ksize.size(), framework::make_ddim(ksize));
82 83

  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
84 85 86 87 88 89
                    "ShapeError: the size of Attr(ksize) and Attr(strides) in "
                    "Op(pool) must be equal. "
                    "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
                    "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
                    ksize.size(), strides.size(), framework::make_ddim(ksize),
                    framework::make_ddim(strides));
90

91 92 93 94
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
111 112 113
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
114
    for (int i = 0; i < data_dims.size(); ++i) {
115
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
116
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
117
      } else {
118 119 120
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
121
      }
122
    }
123
  }
124 125 126 127 128 129 130 131 132 133

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

134
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
135
  ctx->ShareLoD("X", "Out");
136 137
}

138
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
139
    const framework::ExecutionContext& ctx) const {
140
  framework::LibraryType library_{framework::LibraryType::kPlain};
141
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
142 143
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
144
#ifdef PADDLE_WITH_CUDA
145 146
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
147 148
  }
#endif
149 150 151 152
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
153
    layout_ = framework::DataLayout::kMKLDNN;
154
  }
155
#endif
156

157 158 159
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
      layout_, library_);
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
184
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
185 186 187
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) must not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                    "Input(X@GRAD) should not be null.");
188 189 190
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

191
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
192
    const framework::ExecutionContext& ctx) const {
193
  framework::LibraryType library_{framework::LibraryType::kPlain};
194
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
195 196
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
197
#ifdef PADDLE_WITH_CUDA
198 199
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
200 201
  }
#endif
202 203 204 205
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
206
    layout_ = framework::DataLayout::kMKLDNN;
207
  }
208
#endif
209

210
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
211 212 213 214 215 216
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
217 218
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
237
void Pool2dOpMaker::Make() {
238 239
  AddInput(
      "X",
C
chengduoZH 已提交
240
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
241 242 243
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
244
  AddOutput("Out",
K
kexinzhao 已提交
245 246 247 248
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
249
            "and W is the width of the feature.");
250

C
chengduoZH 已提交
251
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
252 253
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
254
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
255
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
256 257
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
258
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
259 260
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
261
  // TypedAttrChecker don't support vector type.)
262 263
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
264 265 266
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
267
      .SetDefault(false);
K
kexinzhao 已提交
268 269 270
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
271 272
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
273 274 275
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
276 277
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
278
      "If global_pooling = true, paddings and kernel size will be ignored.")
279
      .SetDefault({0, 0});
280 281
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
282
      "(bool) When true, will exclude the zero-padding in the "
283
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
284 285
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
286
      .SetDefault(true);
287 288
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
289
      "(bool) When true, will perform adaptive pooling instead, "
290 291
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
292 293
      "pooling in each grid area to get output pooling value. "
      "Default False.")
294 295
      .SetDefault(false);

296 297
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
298
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
299
      .SetDefault(false);
300 301
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
302
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
303
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
304
      "the floor function will be used. Default False")
305
      .SetDefault(false);
306
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
307
                "(bool) Only used in mkldnn kernel. Default False")
308
      .SetDefault(false);
309
  AddAttr<bool>("use_quantizer",
K
Kaipeng Deng 已提交
310
                "(bool) "
311 312
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
K
Kaipeng Deng 已提交
313
                "Only used on CPU. Default False")
314
      .SetDefault(false);
315 316 317 318 319 320
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
321
      .SetDefault("NCHW");
322 323 324 325 326
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

327 328 329 330 331 332
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
333
  // TODO(dzhwinter): need to registered layout transform function
334 335

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
336 337 338
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
339
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
340
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
341
These two elements represent height and width, respectively.
C
chengduoZH 已提交
342 343
The input(X) size and output(Out) size may be different.

344
Example:
F
fengjiayi 已提交
345

C
chengduoZH 已提交
346
  Input:
F
fengjiayi 已提交
347

K
kexinzhao 已提交
348
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
349

C
chengduoZH 已提交
350
  Output:
F
fengjiayi 已提交
351

K
kexinzhao 已提交
352
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

370 371
  For ceil_mode = false:
       $$
372
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
373 374
       $$
       $$
375
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
376
       $$
377

378 379
  For ceil_mode = true:
       $$
380
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
381 382
       $$
       $$
383
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
384
       $$
K
kexinzhao 已提交
385

386
  For exclusive = false:
387
       $$
388
       hstart = i * strides[0] - pad_height_top
389 390 391 392 393
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
394
       wstart = j * strides[1] - pad_width_left
395 396 397 398 399 400 401
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
402

403
  For exclusive = true:
404
       $$
405
       hstart = max(0, i * strides[0] - pad_height_top)
406 407 408 409 410
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
411
       wstart = max(0, j * strides[1] - pad_width_left)
412 413 414 415 416 417 418
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
419

420
)DOC");
421 422
}

C
chengduo 已提交
423 424
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
425
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
426
      const override {
427 428
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
429 430 431
  }
};

Y
Yu Yang 已提交
432
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
433 434
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
435 436
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
437 438 439
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
440
  AddOutput("Out",
C
chengduoZH 已提交
441
            "(Tensor) The output tensor of pooling operator."
442
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
443 444
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
445
            "width of the feature, respectively.");
446

C
chengduoZH 已提交
447
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
448
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
449
                       "and \"avg\" for average-pooling.")
450
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
451 452 453 454
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
455
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
456 457
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
458
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
459 460
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
461 462 463
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
464
      .SetDefault(false);
K
kexinzhao 已提交
465 466 467 468
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
469 470
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
471 472
  AddAttr<std::vector<int>>(
      "paddings",
473 474 475 476
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
477
      "If global_pooling = true, ksize and paddings will be ignored.")
478 479
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
480 481
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
482
      "(bool) When true, will exclude the zero-padding in the "
483
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
484 485
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
486
      .SetDefault(true);
487 488
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
489
      "(bool) When true, will perform adaptive pooling instead, "
490 491
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
492 493
      "pooling in each grid area to get output pooling value. "
      "Default False")
494
      .SetDefault(false);
495

496 497
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
498
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
499
      .SetDefault(false);
500 501
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
502
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
503
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
504
      "the floor function will be used. Default False")
505
      .SetDefault(false);
506
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
507
                "(bool) Only used in mkldnn kernel. Default False")
508
      .SetDefault(false);
509 510
  AddAttr<std::string>(
      "data_format",
511 512 513
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
514
      "the input will be transformed automatically. ")
515 516 517 518 519 520 521
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
522 523
  // TODO(dzhwinter): need to registered layout transform function

524
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
525 526
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
527
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
528
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
529 530
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
531
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
532 533 534

Example:
  Input:
K
kexinzhao 已提交
535
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
536
  Output:
K
kexinzhao 已提交
537
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

561
  For ceil_mode = false:
562
       $$
563
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
564 565
       $$
       $$
566
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
567 568
       $$
       $$
569
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
570
       $$
571
  For ceil_mode = true:
572
       $$
573
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
574 575
       $$
       $$
576
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
577 578
       $$
       $$
579
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
580
       $$
D
dengkaipeng 已提交
581

582
  For exclusive = false:
583
       $$
584
       dstart = i * strides[0] - pad_depth_front
585 586 587 588 589
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
590
       hstart = j * strides[1] - pad_height_top
591 592 593 594 595
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
596
       wstart = k * strides[2] -  pad_width_left
597 598 599 600 601 602 603
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
604

605
  For exclusive = true:
606
       $$
607
       dstart = max(0, i * strides[0] - pad_depth_front)
608 609 610 611 612
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
613 614 615
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
616 617 618
       hend = min(H, hstart + ksize[1])
       $$
       $$
619
       wstart = max(0, k * strides[2] - pad_width_left)
620 621 622 623 624 625 626
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
627

628
)DOC");
629
}
630 631 632 633 634
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
635 636 637 638
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
639
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
640

Q
QI JUN 已提交
641 642 643 644 645
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
646
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
647

H
hong 已提交
648 649 650 651
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
652
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
653

Q
QI JUN 已提交
654 655 656 657 658 659
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);