pool_op.cc 21.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16
#include <unordered_map>
17 18 19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27 28
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
29 30
  int output_size;
  if (!ceil_mode) {
31 32
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
33 34
  } else {
    output_size =
35 36 37
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
38
  }
39 40 41 42 43 44
  PADDLE_ENFORCE_GT(
      output_size, 0,
      "Due to the settings of padding(%d,%d), filter_size(%d) and "
      "stride(%d), the output size is less than 0, please check "
      "again. Input_size:%d",
      padding_1, padding_2, filter_size, stride, input_size);
45 46 47
  return output_size;
}

C
chengduo 已提交
48
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
49 50 51 52
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                    "Out(Output) of Pooling should not be null.");
53

C
chengduoZH 已提交
54
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
55 56 57
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
58
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
59
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
60 61 62 63
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
64

65 66 67
  auto in_x_dims = ctx->GetInputDim("X");
  PADDLE_ENFORCE_EQ(in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
                    "Pooling intput should be 4-D or 5-D tensor.");
68

69 70
  PADDLE_ENFORCE_EQ(in_x_dims.size() - ksize.size(), 2U,
                    "Input size and pooling size should be consistent.");
71 72 73
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
91 92 93
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
94 95
    for (size_t i = 0; i < data_dims.size(); ++i) {
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
96
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
97
      } else {
98 99 100
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
101
      }
102
    }
103
  }
104 105 106 107 108 109 110 111 112 113

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

114
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
115
  ctx->ShareLoD("X", "Out");
116 117
}

118
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
119
    const framework::ExecutionContext& ctx) const {
120
  framework::LibraryType library_{framework::LibraryType::kPlain};
121
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
122 123
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
124
#ifdef PADDLE_WITH_CUDA
125 126
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
127 128
  }
#endif
129 130 131 132
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
133
    layout_ = framework::DataLayout::kMKLDNN;
134
  }
135
#endif
136

137 138 139
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
      layout_, library_);
140 141
}

C
chengduo 已提交
142
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
143 144 145
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) must not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                    "Input(X@GRAD) should not be null.");
146 147 148
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

149
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
150
    const framework::ExecutionContext& ctx) const {
151
  framework::LibraryType library_{framework::LibraryType::kPlain};
152
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
153 154
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
155
#ifdef PADDLE_WITH_CUDA
156 157
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
158 159
  }
#endif
160 161 162 163
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
164
    layout_ = framework::DataLayout::kMKLDNN;
165
  }
166
#endif
167

168
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
169 170 171 172 173 174
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
175 176
}

Y
Yu Yang 已提交
177
void Pool2dOpMaker::Make() {
178 179
  AddInput(
      "X",
C
chengduoZH 已提交
180
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
181 182 183
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
184
  AddOutput("Out",
K
kexinzhao 已提交
185 186 187 188
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
189
            "and W is the width of the feature.");
190

C
chengduoZH 已提交
191
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
192 193
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
194
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
195
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
196 197
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
198
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
199 200
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
201
  // TypedAttrChecker don't support vector type.)
202 203
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
204 205 206
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
207
      .SetDefault(false);
K
kexinzhao 已提交
208 209 210
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
211 212
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
213 214 215
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
216 217
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
218
      "If global_pooling = true, paddings and kernel size will be ignored.")
219
      .SetDefault({0, 0});
220 221
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
222
      "(bool) When true, will exclude the zero-padding in the "
223
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
224 225
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
226
      .SetDefault(true);
227 228
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
229
      "(bool) When true, will perform adaptive pooling instead, "
230 231
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
232 233
      "pooling in each grid area to get output pooling value. "
      "Default False.")
234 235
      .SetDefault(false);

236 237
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
238
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
239
      .SetDefault(false);
240 241
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
242
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
243
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
244
      "the floor function will be used. Default False")
245
      .SetDefault(false);
246
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
247
                "(bool) Only used in mkldnn kernel. Default False")
248
      .SetDefault(false);
249
  AddAttr<bool>("use_quantizer",
K
Kaipeng Deng 已提交
250
                "(bool) "
251 252
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
K
Kaipeng Deng 已提交
253
                "Only used on CPU. Default False")
254
      .SetDefault(false);
255 256 257 258 259 260
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
261
      .SetDefault("NCHW");
262 263 264 265 266
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

267 268 269 270 271 272
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
273
  // TODO(dzhwinter): need to registered layout transform function
274 275

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
276 277 278
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
279
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
280
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
281
These two elements represent height and width, respectively.
C
chengduoZH 已提交
282 283
The input(X) size and output(Out) size may be different.

284
Example:
F
fengjiayi 已提交
285

C
chengduoZH 已提交
286
  Input:
F
fengjiayi 已提交
287

K
kexinzhao 已提交
288
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
289

C
chengduoZH 已提交
290
  Output:
F
fengjiayi 已提交
291

K
kexinzhao 已提交
292
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

310 311
  For ceil_mode = false:
       $$
312
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
313 314
       $$
       $$
315
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
316
       $$
317

318 319
  For ceil_mode = true:
       $$
320
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
321 322
       $$
       $$
323
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
324
       $$
K
kexinzhao 已提交
325

326
  For exclusive = false:
327
       $$
328
       hstart = i * strides[0] - pad_height_top
329 330 331 332 333
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
334
       wstart = j * strides[1] - pad_width_left
335 336 337 338 339 340 341
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
342

343
  For exclusive = true:
344
       $$
345
       hstart = max(0, i * strides[0] - pad_height_top)
346 347 348 349 350
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
351
       wstart = max(0, j * strides[1] - pad_width_left)
352 353 354 355 356 357 358
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
359

360
)DOC");
361 362
}

C
chengduo 已提交
363 364 365 366 367 368 369 370
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
371
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
372 373
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
374 375
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
376 377 378
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
379
  AddOutput("Out",
C
chengduoZH 已提交
380
            "(Tensor) The output tensor of pooling operator."
381
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
382 383
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
384
            "width of the feature, respectively.");
385

C
chengduoZH 已提交
386
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
387
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
388
                       "and \"avg\" for average-pooling.")
389
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
390 391 392 393
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
394
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
395 396
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
397
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
398 399
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
400 401 402
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
403
      .SetDefault(false);
K
kexinzhao 已提交
404 405 406 407
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
408 409
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
410 411
  AddAttr<std::vector<int>>(
      "paddings",
412 413 414 415
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
416
      "If global_pooling = true, ksize and paddings will be ignored.")
417 418
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
419 420
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
421
      "(bool) When true, will exclude the zero-padding in the "
422
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
423 424
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
425
      .SetDefault(true);
426 427
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
428
      "(bool) When true, will perform adaptive pooling instead, "
429 430
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
431 432
      "pooling in each grid area to get output pooling value. "
      "Default False")
433
      .SetDefault(false);
434

435 436
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
437
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
438
      .SetDefault(false);
439 440
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
441
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
442
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
443
      "the floor function will be used. Default False")
444
      .SetDefault(false);
445
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
446
                "(bool) Only used in mkldnn kernel. Default False")
447
      .SetDefault(false);
448 449
  AddAttr<std::string>(
      "data_format",
450 451 452
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
453
      "the input will be transformed automatically. ")
454 455 456 457 458 459 460
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
461 462
  // TODO(dzhwinter): need to registered layout transform function

463
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
464 465
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
466
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
467
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
468 469
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
470
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
471 472 473

Example:
  Input:
K
kexinzhao 已提交
474
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
475
  Output:
K
kexinzhao 已提交
476
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

500
  For ceil_mode = false:
501
       $$
502
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
503 504
       $$
       $$
505
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
506 507
       $$
       $$
508
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
509
       $$
510
  For ceil_mode = true:
511
       $$
512
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
513 514
       $$
       $$
515
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
516 517
       $$
       $$
518
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
519
       $$
D
dengkaipeng 已提交
520

521
  For exclusive = false:
522
       $$
523
       dstart = i * strides[0] - pad_depth_front
524 525 526 527 528
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
529
       hstart = j * strides[1] - pad_height_top
530 531 532 533 534
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
535
       wstart = k * strides[2] -  pad_width_left
536 537 538 539 540 541 542
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
543

544
  For exclusive = true:
545
       $$
546
       dstart = max(0, i * strides[0] - pad_depth_front)
547 548 549 550 551
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
552 553 554
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
555 556 557
       hend = min(H, hstart + ksize[1])
       $$
       $$
558
       wstart = max(0, k * strides[2] - pad_width_left)
559 560 561 562 563 564 565
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
566

567
)DOC");
568
}
569 570 571 572 573
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
574
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
C
chengduo 已提交
575
                  ops::PoolOpInferVarType,
576 577
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
578

Q
QI JUN 已提交
579 580 581 582 583
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
584
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
585

Y
Yang Yang 已提交
586
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
C
chengduo 已提交
587
                  ops::PoolOpInferVarType,
588 589
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
590

Q
QI JUN 已提交
591 592 593 594 595 596
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);