dropout_op.cu 3.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14 15

#define EIGEN_USE_GPU
16 17 18 19
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/dropout_op.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
X
Xinghai Sun 已提交
22

23 24 25
namespace paddle {
namespace operators {

K
Kexin Zhao 已提交
26
template <typename T>
27 28 29 30 31 32 33
__global__ void RandomGenerator(const size_t n, const int seed,
                                const float dropout_prob, const T* src,
                                T* mask_data, T* dst) {
  thrust::minstd_rand rng;
  rng.seed(seed);
  thrust::uniform_real_distribution<float> dist(0, 1);

D
dzhwinter 已提交
34
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
35 36 37 38
  int step_size = 0;

  T mask;
  T dest;
D
dzhwinter 已提交
39
  for (; idx < n; idx += blockDim.x * gridDim.x) {
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    T s = src[idx];
    if (step_size == 0) {
      rng.discard(idx);
      step_size = blockDim.x * gridDim.x;
    } else {
      rng.discard(step_size);
    }
    if (dist(rng) < dropout_prob) {
      mask = static_cast<T>(0);
    } else {
      mask = static_cast<T>(1);
    }
    dest = s * mask;
    mask_data[idx] = mask;
    dst[idx] = dest;
55
  }
D
dzhwinter 已提交
56
}
57 58 59 60

// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
K
Kexin Zhao 已提交
61
template <typename Place, typename T>
Y
Yu Yang 已提交
62
class GPUDropoutKernel : public framework::OpKernel<T> {
63 64 65 66 67
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
    y->mutable_data<T>(context.GetPlace());
K
Kexin Zhao 已提交
68
    float dropout_prob = context.Attr<float>("dropout_prob");
69

Q
QI JUN 已提交
70
    auto& place = *context.template device_context<Place>().eigen_device();
71
    if (!context.Attr<bool>("is_test")) {
72 73
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
D
dzhwinter 已提交
74 75 76
      size_t size = framework::product(mask->dims());
      auto* x_data = x->data<T>();
      auto* y_data = y->mutable_data<T>(context.GetPlace());
77 78 79 80 81

      std::random_device rnd;
      int seed =
          context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();

D
dzhwinter 已提交
82 83
      int threads = 512;
      int grid = (x->numel() + threads - 1) / threads;
K
Kexin Zhao 已提交
84 85
      RandomGenerator<
          T><<<grid, threads, 0, context.cuda_device_context().stream()>>>(
86
          size, seed, dropout_prob, x_data, mask_data, y_data);
87
    } else {
88 89
      auto X = EigenMatrix<T>::Reshape(*x, 1);
      auto Y = EigenMatrix<T>::Reshape(*y, 1);
K
Kexin Zhao 已提交
90
      Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
91
    }
92 93 94 95 96 97
  }
};

}  // namespace operators
}  // namespace paddle

X
Xinghai Sun 已提交
98
namespace ops = paddle::operators;
K
Kexin Zhao 已提交
99
namespace plat = paddle::platform;
Q
QI JUN 已提交
100
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
101 102
    dropout, ops::GPUDropoutKernel<plat::CUDADeviceContext, float>,
    ops::GPUDropoutKernel<plat::CUDADeviceContext, plat::float16>);
K
Kexin Zhao 已提交
103 104
REGISTER_OP_CUDA_KERNEL(dropout_grad,
                        ops::DropoutGradKernel<plat::CUDADeviceContext, float>);