dropout_op.cu 3.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14 15

#define EIGEN_USE_GPU
16 17 18 19
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/dropout_op.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
X
Xinghai Sun 已提交
22

23 24 25
namespace paddle {
namespace operators {

K
Kexin Zhao 已提交
26
template <typename T>
D
dzhwinter 已提交
27 28
__global__ void RandomGenerator(const size_t n, const T* src,
                                const T* cpu_mask_data, T* mask_data, T* dst) {
D
dzhwinter 已提交
29 30
  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  for (; idx < n; idx += blockDim.x * gridDim.x) {
D
dzhwinter 已提交
31
    mask_data[idx] = cpu_mask_data[idx];
D
dzhwinter 已提交
32
    dst[idx] = mask_data[idx] * src[idx];
33
  }
D
dzhwinter 已提交
34
}
35 36 37 38

// It seems that Eigen::Tensor::setRandom in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
K
Kexin Zhao 已提交
39
template <typename Place, typename T>
Y
Yu Yang 已提交
40
class GPUDropoutKernel : public framework::OpKernel<T> {
41 42 43 44 45
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
    y->mutable_data<T>(context.GetPlace());
K
Kexin Zhao 已提交
46
    float dropout_prob = context.Attr<float>("dropout_prob");
47

Q
QI JUN 已提交
48
    auto& place = *context.template device_context<Place>().eigen_device();
49
    if (!context.Attr<bool>("is_test")) {
50 51
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
D
dzhwinter 已提交
52 53 54
      size_t size = framework::product(mask->dims());
      auto* x_data = x->data<T>();
      auto* y_data = y->mutable_data<T>(context.GetPlace());
55 56 57 58

      std::random_device rnd;
      int seed =
          context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
D
dzhwinter 已提交
59 60 61 62 63 64 65 66 67 68 69
      std::minstd_rand engine;
      engine.seed(seed);
      std::uniform_real_distribution<float> dist(0, 1);
      framework::Vector<T> cpu_mask(size);
      for (size_t i = 0; i < size; ++i) {
        if (dist(engine) < dropout_prob) {
          cpu_mask[i] = static_cast<T>(0);
        } else {
          cpu_mask[i] = static_cast<T>(1);
        }
      }
70

D
dzhwinter 已提交
71 72
      int threads = 512;
      int grid = (x->numel() + threads - 1) / threads;
K
Kexin Zhao 已提交
73 74
      RandomGenerator<
          T><<<grid, threads, 0, context.cuda_device_context().stream()>>>(
D
dzhwinter 已提交
75 76
          size, x_data, cpu_mask.CUDAData(context.GetPlace()), mask_data,
          y_data);
77
    } else {
D
dzhwinter 已提交
78 79
      auto X = EigenVector<T>::Flatten(*x);
      auto Y = EigenVector<T>::Flatten(*y);
K
Kexin Zhao 已提交
80
      Y.device(place) = X * static_cast<T>(1.0f - dropout_prob);
81
    }
82 83 84 85 86 87
  }
};

}  // namespace operators
}  // namespace paddle

X
Xinghai Sun 已提交
88
namespace ops = paddle::operators;
K
Kexin Zhao 已提交
89
namespace plat = paddle::platform;
Q
QI JUN 已提交
90
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
91
    dropout, ops::GPUDropoutKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
92
    ops::GPUDropoutKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
93
    ops::GPUDropoutKernel<plat::CUDADeviceContext, plat::float16>);
K
Kexin Zhao 已提交
94
REGISTER_OP_CUDA_KERNEL(dropout_grad,
D
dzhwinter 已提交
95
                        ops::DropoutGradKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
96
                        ops::DropoutGradKernel<plat::CUDADeviceContext, float>);