test_imperative_mnist.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
M
minqiyang 已提交
26 27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable
28
from test_imperative_base import new_program_scope
29
from utils import DyGraphProgramDescTracerTestHelper
30 31


M
minqiyang 已提交
32
class SimpleImgConvPool(fluid.dygraph.Layer):
M
minqiyang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
72

M
minqiyang 已提交
73
    def forward(self, inputs):
M
minqiyang 已提交
74 75 76
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
77 78


M
minqiyang 已提交
79
class MNIST(fluid.dygraph.Layer):
M
minqiyang 已提交
80 81
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)
82

M
minqiyang 已提交
83
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
84
            self.full_name(), 20, 5, 2, 2, act="relu")
85

M
minqiyang 已提交
86
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
87
            self.full_name(), 50, 5, 2, 2, act="relu")
M
minqiyang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
107 108 109 110 111 112 113 114 115
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

M
minqiyang 已提交
116
    def test_mnist_float32(self):
117
        seed = 90
M
minqiyang 已提交
118
        epoch_num = 1
119 120 121
        batch_size = 128
        batch_num = 50

M
minqiyang 已提交
122
        with fluid.dygraph.guard():
123 124 125
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
126 127
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
128 129 130 131 132 133 134 135

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
136

M
minqiyang 已提交
137
            mnist.train()
138
            dy_param_init_value = {}
139 140 141

            helper = DyGraphProgramDescTracerTestHelper(mnist, self)

M
minqiyang 已提交
142
            for epoch in range(epoch_num):
143 144 145 146 147 148
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
149
                    label.stop_gradient = True
M
minqiyang 已提交
150

151 152 153 154 155 156 157 158
                    if batch_id % 10 == 0:
                        cost, cost_static = helper.run(inputs=img,
                                                       feed_names=['image'],
                                                       fetch_names=['cost'])
                        helper.assertEachVar(cost, cost_static)
                    else:
                        cost = mnist(img)

M
minqiyang 已提交
159 160 161
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
162
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
163 164 165

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
166
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
167

L
lujun 已提交
168
                    avg_loss.backward()
M
minqiyang 已提交
169 170 171 172 173
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
174
                        dy_param_value[param.name] = param.numpy()
175 176 177 178 179 180 181 182

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

M
minqiyang 已提交
183 184
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
185
            train_reader = paddle.batch(
186 187 188
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True)
189 190 191 192 193

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
194 195 196
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
197 198 199 200

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
201
            for param in mnist.parameters():
202 203 204 205 206 207 208 209
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
210 211
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
212 213
                    if batch_id >= batch_num:
                        break
M
minqiyang 已提交
214 215 216 217
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
218 219
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])
M
minqiyang 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
236 237

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
238 239 240 241
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

242
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
243
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
244 245 246 247


if __name__ == '__main__':
    unittest.main()