test_imperative_mnist.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
M
minqiyang 已提交
26 27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable
28 29 30
from test_imperative_base import new_program_scope


M
minqiyang 已提交
31
class SimpleImgConvPool(fluid.dygraph.Layer):
M
minqiyang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
73

M
minqiyang 已提交
74
    def forward(self, inputs):
M
minqiyang 已提交
75 76 77
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
78 79


M
minqiyang 已提交
80
class MNIST(fluid.dygraph.Layer):
M
minqiyang 已提交
81 82
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)
83

M
minqiyang 已提交
84 85
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            self.full_name(), 1, 20, 5, 2, 2, act="relu")
86

M
minqiyang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            self.full_name(), 20, 50, 5, 2, 2, act="relu")

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
108 109 110 111 112 113 114 115 116
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

M
minqiyang 已提交
117
    def test_mnist_float32(self):
118
        seed = 90
M
minqiyang 已提交
119
        epoch_num = 1
120 121 122
        batch_size = 128
        batch_num = 50

M
minqiyang 已提交
123
        with fluid.dygraph.guard():
124 125 126
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
127 128
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
129 130 131 132 133 134 135 136

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
137

M
minqiyang 已提交
138
            mnist.train()
139
            dy_param_init_value = {}
M
minqiyang 已提交
140
            for epoch in range(epoch_num):
141 142 143 144 145 146
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
147
                    label.stop_gradient = True
M
minqiyang 已提交
148 149 150 151 152

                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
153
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
154 155 156

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
157
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
158

L
lujun 已提交
159
                    avg_loss.backward()
M
minqiyang 已提交
160 161 162 163 164
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
165
                        dy_param_value[param.name] = param.numpy()
166 167 168 169 170 171 172 173

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

M
minqiyang 已提交
174 175
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
176
            train_reader = paddle.batch(
177 178 179
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True)
180 181 182 183 184

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
185 186 187
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
188 189 190 191

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
192
            for param in mnist.parameters():
193 194 195 196 197 198 199 200
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
201 202
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
203 204
                    if batch_id >= batch_num:
                        break
M
minqiyang 已提交
205 206 207 208
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
209 210
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])
M
minqiyang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
227 228

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
229 230 231 232
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

233
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
234
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
235 236 237 238


if __name__ == '__main__':
    unittest.main()