transpose_mkldnn_op.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/transpose_op.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    int ndims = axis.size();
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    const T* input_data = input->data<T>();

    if (ndims == 1) {
      output->ShareDataWith(*input);
      return;
    }

A
Adam 已提交
47
    auto nchw_tz = paddle::framework::vectorize<int64_t>(input->dims());
48

H
hong 已提交
49
    const std::string key = platform::CreateKey(nchw_tz, ctx.OutputName("Out"));
50

51 52
    platform::TransposeMKLDNNHandler<T> handler(nchw_tz, axis, dev_ctx,
                                                mkldnn_engine, key);
53

54
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
55
        input->format(), platform::to_void_cast<T>(input_data));
56 57 58 59
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(output, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);
60

A
Adam 已提交
61 62 63 64
    mkldnn::stream astream(mkldnn_engine);
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
65

66
    output->set_layout(DataLayout::kNCHW);
A
Adam 已提交
67
    output->set_format(MKLDNNMemoryFormat::undef);
68 69 70
  }
};

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
template <typename T>
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    if (!x_grad) return;
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    std::vector<int> reversed_axis(axis);
    int ndims = axis.size();
    if (ndims == 1) {
      x_grad->ShareDataWith(*out_grad);
      return;
    }

    for (size_t i = 0; i < axis.size(); i++) {
      reversed_axis[axis[i]] = i;
    }

    const T* out_grad_data = out_grad->data<T>();
    x_grad->mutable_data<T>(ctx.GetPlace());

A
Adam 已提交
99
    auto nchw_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());
100

101
    const std::string key = platform::CreateKey(
H
hong 已提交
102
        nchw_tz, ctx.OutputName(framework::GradVarName("X")));
103

104 105
    platform::TransposeMKLDNNHandler<T> handler(nchw_tz, reversed_axis, dev_ctx,
                                                mkldnn_engine, key);
106

107 108
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
        out_grad->format(), platform::to_void_cast<T>(out_grad_data));
109 110 111 112 113
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(x_grad, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);

A
Adam 已提交
114 115 116 117
    mkldnn::stream astream(mkldnn_engine);
    transpose_p->execute(astream, *transpose_src_memory_p,
                         *transpose_dst_memory_p);
    astream.wait();
118 119 120
  }
};

121 122 123 124 125
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kTransposeMKLDNNFP32,
                                    ops::TransposeMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<uint8_t>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(transpose2, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kTransposeMKLDNNINT8,
                                    ops::TransposeMKLDNNOpKernel<int8_t>);

141 142
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNOpKernel<float>);
143 144 145

REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);
146

147 148
REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);