transpose_mkldnn_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using framework::DataLayout;

template <typename T>
class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    int ndims = axis.size();
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    const T* input_data = input->data<T>();

    if (ndims == 1) {
      output->ShareDataWith(*input);
      return;
    }

    std::vector<int> nchw_tz = paddle::framework::vectorize2int(input->dims());

48 49
    const std::string key = platform::TransposeMKLDNNHandler::GetHash(
        nchw_tz, axis, ctx.op().Output("Out"));
50

51 52
    platform::TransposeMKLDNNHandler handler(nchw_tz, axis, dev_ctx,
                                             mkldnn_engine, key);
53

54
    auto transpose_src_memory_p = handler.AcquireSrcMemory(
55
        input->get_mkldnn_prim_desc(), platform::to_void_cast<T>(input_data));
56 57 58 59
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(output, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);
60

61 62 63
    std::vector<mkldnn::primitive> pipeline;
    pipeline.push_back(*transpose_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
64 65 66 67 68 69 70 71 72

    // Transpose did change logical dimensions of Tensor, but reorder does not.
    // Reorder does change only physical layout eg. format , strides
    // so we need to create new primitive descriptor with changed logical layout
    // so it match output shape
    auto output_mem_pd = paddle::platform::create_prim_desc_from_dims(
        paddle::framework::vectorize2int(output->dims()),
        mkldnn::memory::format::blocked);
    output->set_mkldnn_prim_desc(output_mem_pd);
73 74 75
  }
};

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
template <typename T>
class TransposeINT8MKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    std::vector<int> axis_int8 = {0, 2, 3, 1};
    if (axis.size() != 1) {
      PADDLE_ENFORCE_EQ(axis.size(), axis_int8.size());
      for (size_t i = 0; i < axis.size(); i++) {
        PADDLE_ENFORCE_EQ(axis[i], axis_int8[i],
                          "Current INT8 MKLDNN Transpose kernel only surpport "
                          "axis with [0, 2, 3, 1] due to MKL-DNN kernel "
                          "implementation.");
      }
    }
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    output->ShareDataWith(*input);
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(input->format());
  }
};

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
template <typename T>
class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    if (!x_grad) return;

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    std::vector<int> axis = ctx.Attr<std::vector<int>>("axis");
    std::vector<int> reversed_axis(axis);
    int ndims = axis.size();
    if (ndims == 1) {
      x_grad->ShareDataWith(*out_grad);
      return;
    }

    for (size_t i = 0; i < axis.size(); i++) {
      reversed_axis[axis[i]] = i;
    }

    const T* out_grad_data = out_grad->data<T>();
    x_grad->mutable_data<T>(ctx.GetPlace());

    std::vector<int> nchw_tz =
        paddle::framework::vectorize2int(out_grad->dims());

    const std::string key = platform::TransposeMKLDNNHandler::GetHash(
        nchw_tz, axis, ctx.op().Output(framework::GradVarName("X")));

    platform::TransposeMKLDNNHandler handler(nchw_tz, reversed_axis, dev_ctx,
                                             mkldnn_engine, key);

137 138 139
    auto transpose_src_memory_p =
        handler.AcquireSrcMemory(out_grad->get_mkldnn_prim_desc(),
                                 platform::to_void_cast<T>(out_grad_data));
140 141 142 143 144 145 146 147
    auto transpose_dst_memory_p =
        handler.AcquireDstMemory(x_grad, ctx.GetPlace());
    auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
                                                transpose_src_memory_p);

    std::vector<mkldnn::primitive> pipeline;
    pipeline.push_back(*transpose_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
148 149 150 151 152 153 154 155 156

    // Transpose did change logical dimensions of Tensor, but reorder does not.
    // Reorder does change only physical layout eg. format , strides
    // so we need to create new primitive descriptor with changed logical layout
    // so it match output shape
    auto x_grad_mem_pd = paddle::platform::create_prim_desc_from_dims(
        paddle::framework::vectorize2int(x_grad->dims()),
        mkldnn::memory::format::blocked);
    x_grad->set_mkldnn_prim_desc(x_grad_mem_pd);
157 158 159
  }
};

160 161 162 163 164 165
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(transpose2, MKLDNN, ::paddle::platform::CPUPlace,
166 167 168 169
                   ops::TransposeMKLDNNOpKernel<float>,
                   ops::TransposeINT8MKLDNNOpKernel<uint8_t>,
                   ops::TransposeINT8MKLDNNOpKernel<int8_t>);

170 171
REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNOpKernel<float>);
172 173 174 175 176

REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);
REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::TransposeMKLDNNGradOpKernel<float>);