multihead_matmul_op.cc 12.5 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
11 12
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  See
the License for the specific language governing permissions and
P
Pei Yang 已提交
13 14 15
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h"
P
Pei Yang 已提交
17 18 19 20 21 22 23 24 25

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
26
#if IS_TRT_VERSION_GE(6000)
P
Pei Yang 已提交
27 28 29 30
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
31 32 33 34 35 36 37 38 39 40 41 42
    auto* input = engine_->GetITensor(op_desc.Input("Input").front());

    // fc weights and fc bias
    auto weight_name = op_desc.Input("W").front();
    auto bias_name = op_desc.Input("Bias").front();

    auto* weight_v = scope.FindVar(weight_name);
    auto* weight_t = weight_v->GetMutable<framework::LoDTensor>();

    auto* bias_v = scope.FindVar(bias_name);
    auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    float* weight_data = nullptr;
    bool enable_int8 = op_desc.HasAttr("enable_int8");
    float in_scale = 0.;

    if (enable_int8) {
      PADDLE_ENFORCE_EQ(
          op_desc.HasAttr("Input_scale"), true,
          platform::errors::InvalidArgument(
              "must have input scale in multihead layers in int8 mode"));
      in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")) * 127;
      auto weight_scale =
          BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
      weight_data =
          engine_->GetWeightCPUData(weight_name, weight_t, true, weight_scale);
      engine_->SetTensorDynamicRange(input, in_scale);
    } else {
      weight_data = engine_->GetWeightCPUData(weight_name, weight_t, false);
    }

62 63 64 65 66 67
    float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t, false);
    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(weight_t->numel());
    memcpy(weight_data_tmp.data(), weight_data,
           weight_t->numel() * sizeof(float));

68
    // (hidden_in, 3, hidden_out)
69 70
    auto weight_dims = weight_t->dims();

71 72 73 74 75
    int hidden_in = weight_dims[0];   // channels_in
    int three = weight_dims[1];       // channels_out
    int hidden_out = weight_dims[2];  // channels_out
    int m = hidden_in;
    int n = three * hidden_out;
76 77 78 79 80 81 82 83
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
84

85
    int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number"));
86 87

    nvinfer1::ILayer* layer = nullptr;
88
    auto output_name = op_desc.Output("Out")[0];
89

90
    if (engine_->with_dynamic_shape()) {
91
      if (engine_->use_oss()) {
92 93 94 95 96 97 98 99 100 101 102 103
        int head_size = hidden_out / head_number;
        // [3, head_number, head_size, hidden_in] -> [head_number, 3, head_size,
        // hidden_in]
        auto transpose_weight_v2 = [](const float* src, float* dst, int three,
                                      int head_number, int head_size,
                                      int hidden_in) {
          const int HH = head_size * hidden_in;
          for (int i = 0; i < three; ++i) {
            for (int n = 0; n < head_number; ++n) {
              for (int hh = 0; hh < HH; ++hh) {
                dst[n * three * HH + i * HH + hh] =
                    src[i * head_number * HH + n * HH + hh];
104 105 106 107
              }
            }
          }
        };
108
        // [3, head_number, head_size] -> [head_number, 3, head_size]
109 110
        auto transpose_bias_v2 = [](const float* src, float* dst, int N,
                                    int H) {
111 112 113 114 115 116 117 118 119 120
          for (int i = 0; i < 3; ++i) {
            for (int n = 0; n < N; ++n) {
              for (int h = 0; h < H; ++h) {
                dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h];
              }
            }
          }
        };
        memcpy(weight_data_tmp.data(), weight_data,
               weight_t->numel() * sizeof(float));
121 122
        transpose_weight_v2(weight_data_tmp.data(), weight_data, three,
                            head_number, head_size, hidden_in);
123 124 125 126 127 128
        nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT,
                                 static_cast<void*>(weight_data),
                                 static_cast<int32_t>(weight_t->numel())};

        std::vector<float> bias_data_tmp;
        bias_data_tmp.reserve(bias_t->numel());
129 130
        memcpy(bias_data_tmp.data(), bias_data,
               bias_t->numel() * sizeof(float));
131 132 133 134 135 136
        transpose_bias_v2(bias_data_tmp.data(), bias_data, head_number,
                          head_size);
        nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT,
                               static_cast<void*>(bias_data),
                               static_cast<int32_t>(bias_t->numel())};

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        nvinfer1::ILayer* fc_layer = nullptr;
        float dp_probs = 1.0 / 127.0;
        if (enable_int8) {
          nvinfer1::DimsHW nv_ksize(1, 1);
          fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *input, n,
                                          nv_ksize, weight, bias);
        } else {
          fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input, n,
                                          weight, bias);
        }

        if (enable_int8) {
          PADDLE_ENFORCE_EQ(
              op_desc.HasAttr("out_threshold"), true,
              platform::errors::InvalidArgument(
                  "must have out threshold in multihead layers in int8 mode"));
          float out_scale =
              BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
          engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale);
          dp_probs = out_scale / 127.0;
        }
158 159 160 161 162 163 164 165 166

        auto mask_tensor = engine_->GetITensor("qkv_plugin_mask");

        auto creator = GetPluginRegistry()->getPluginCreator(
            "CustomQKVToContextPluginDynamic", "2");
        assert(creator != nullptr);
        int type = static_cast<int>((engine_->WithFp16() == 1)
                                        ? nvinfer1::DataType::kHALF
                                        : nvinfer1::DataType::kFLOAT);
167 168 169
        if (enable_int8) {
          type = static_cast<int>(nvinfer1::DataType::kHALF);
        }
170 171 172 173
        bool has_mask = true;
        int var_seqlen = 1;
        const std::vector<nvinfer1::PluginField> fields{
            {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1},
174
            {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32, 1},
175 176 177
            {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1},
            {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1},
            {"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32, 1},
178
            { "dq_probs", &dp_probs, nvinfer1::PluginFieldType::kFLOAT32, 1 }};
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        nvinfer1::PluginFieldCollection* plugin_collection =
            static_cast<nvinfer1::PluginFieldCollection*>(
                malloc(sizeof(*plugin_collection) +
                       fields.size() *
                           sizeof(nvinfer1::PluginField)));  // remember to free
        plugin_collection->nbFields = static_cast<int>(fields.size());
        plugin_collection->fields = fields.data();

        auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic",
                                            plugin_collection);
        free(plugin_collection);

        std::vector<nvinfer1::ITensor*> plugin_inputs;
        plugin_inputs.emplace_back(fc_layer->getOutput(0));
        plugin_inputs.emplace_back(mask_tensor);
194 195 196 197 198 199 200 201 202
        if (engine_->Has("ernie_pos_name")) {
          plugin_inputs.emplace_back(
              engine_->GetITensor(engine_->Get<std::string>("ernie_pos_name")));
        } else {
          plugin_inputs.emplace_back(engine_->GetITensor(
              engine_->network()
                  ->getInput(2)
                  ->getName()));  // cu_seqlens, eval_placeholder_2
        }
203 204
        auto max_seqlen_tensor =
            engine_->GetITensor(engine_->network()->getInput(3)->getName());
205
        auto* shuffle_layer = TRT_ENGINE_ADD_LAYER(
206 207
            engine_, Shuffle,
            *const_cast<nvinfer1::ITensor*>(max_seqlen_tensor));
208 209 210 211
        nvinfer1::Dims shape_dim;
        shape_dim.nbDims = 1;
        shape_dim.d[0] = -1;
        shuffle_layer->setReshapeDimensions(shape_dim);
212 213
        plugin_inputs.emplace_back(
            shuffle_layer->getOutput(0));  // max_seqlen, eval_placeholder_3
214 215 216 217 218

        auto plugin_layer = engine_->network()->addPluginV2(
            plugin_inputs.data(), plugin_inputs.size(), *plugin);
        layer = plugin_layer;
      } else {
219 220 221 222 223 224
        PADDLE_ENFORCE_EQ(
            input->getDimensions().nbDims, 3,
            platform::errors::InvalidArgument(
                "The Input dim of the MultiheadMatMul should be 3, "
                "but it's (%d) now.",
                input->getDimensions().nbDims));
225 226 227 228 229 230 231 232 233 234 235 236 237
        // transpose weight_data from m * n to  n * m
        auto* input_bias_qk =
            engine_->GetITensor(op_desc.Input("BiasQK").front());

        TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                      static_cast<void*>(weight_data),
                                      static_cast<size_t>(weight_t->numel())};
        weight.dims.assign({n, m});

        TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                    static_cast<void*>(bias_data),
                                    static_cast<size_t>(bias_t->numel())};

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        // add shuffle before fc
        nvinfer1::Dims reshape_before_fc_dim;
        reshape_before_fc_dim.nbDims = 5;
        reshape_before_fc_dim.d[0] = 0;
        reshape_before_fc_dim.d[1] = 0;
        reshape_before_fc_dim.d[2] = 0;
        reshape_before_fc_dim.d[3] = 1;
        reshape_before_fc_dim.d[4] = 1;
        auto* reshape_before_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
        reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
        reshape_before_fc_layer->setName(
            ("shuffle_before_multihead_mamul(Output: " + output_name + ")")
                .c_str());

        // add layer fc
        auto* fc_layer = TRT_ENGINE_ADD_LAYER(
            engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0), n,
            weight.get(), bias.get());
        fc_layer->setName(
            ("multihead_mamul_fc(Output: " + output_name + ")").c_str());

        // no need to add shuffle after fc, just change it in
        // QkvToContextPluginDynamic

263
        // add qkv to context
264
        int head_size = hidden_out / head_number;
265 266 267
        float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));

        std::vector<nvinfer1::ITensor*> plugin_inputs;
268
        plugin_inputs.push_back(fc_layer->getOutput(0));
269
        plugin_inputs.push_back(input_bias_qk);
270 271
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
272
        plugin::DynamicPluginTensorRT* plugin =
273
            new plugin::QkvToContextPluginDynamic(hidden_in, head_number,
274
                                                  head_size, scale, with_fp16);
275
        layer = engine_->AddDynamicPlugin(plugin_inputs.data(), 2, plugin);
276
      }
277 278 279 280 281 282 283 284 285 286 287 288 289 290
    } else {
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the Ernie(Bert) model in static shape mode, which "
          "is not supported for the time being.\n"
          "You can use the config.SetTRTDynamicShapeInfo(...) interface to set "
          "the shape information to run the dynamic shape mode."));
    }
    RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name},
                             test_mode);
#else
    PADDLE_THROW(platform::errors::Fatal(
        "You are running the TRT Dynamic Shape mode, need to confirm that "
        "your TRT version is no less than 6.0"));
#endif
P
Pei Yang 已提交
291 292 293 294 295 296 297 298
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);