trainer.h 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
wanghuancoder 已提交
17
#include <ctime>
18
#include <fstream>
W
wanghuancoder 已提交
19
#include <map>
20 21 22 23 24 25 26
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
D
dongdaxiang 已提交
27
#include "paddle/fluid/framework/data_set.h"
28
#include "paddle/fluid/framework/device_worker.h"
T
Thunderbrook 已提交
29 30
#include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/framework/heter_service.h"
31 32 33 34 35 36
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
D
dongdaxiang 已提交
37
#include "paddle/fluid/platform/port.h"
38 39 40 41

namespace paddle {
namespace framework {

W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50
class Dataset;
class LoDTensor;
class ProgramDesc;
class PullDenseWorker;
class Scope;
class VarDesc;
template <class T>
class ChannelObject;

51 52 53 54 55 56 57
class TrainerBase {
 public:
  TrainerBase() {}
  virtual ~TrainerBase() {}
  // model memory are hosted in root_scope
  void SetScope(Scope* root_scope);
  void SetDebug(const bool debug) { debug_ = debug; }
58
  void SetDataset(Dataset* dataset_ptr) { dataset_ptr_ = dataset_ptr; }
D
dongdaxiang 已提交
59
  virtual void Initialize(const TrainerDesc& trainer_desc,
60
                          Dataset* data_set) = 0;
61 62 63 64 65
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place) = 0;
  virtual void InitOtherEnv(const ProgramDesc& main_program) = 0;
  virtual void Run() = 0;
  virtual void Finalize() = 0;
66
  virtual Scope* GetWorkerScope(int thread_id) = 0;
H
hutuxian 已提交
67 68
  virtual void InitDumpEnv() = 0;
  virtual void DumpWork(int tid);
69 70

 protected:
H
hutuxian 已提交
71 72 73 74
  virtual std::string GetDumpPath(int tid) = 0;
  virtual void ParseDumpConfig(const TrainerDesc& trainer_desc);
  virtual void FinalizeDumpEnv();

75 76
  Scope* root_scope_;
  bool debug_;
77
  Dataset* dataset_ptr_;
T
Thunderbrook 已提交
78
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
79 80 81 82 83 84 85 86 87 88 89

  // For dump param or field
  bool need_dump_field_ = false;
  bool need_dump_param_ = false;
  std::string dump_fields_path_;
  std::string dump_converter_;
  std::vector<std::string> dump_param_;
  std::vector<std::string> dump_fields_;
  int dump_thread_num_;
  std::vector<std::thread> dump_thread_;
  std::shared_ptr<paddle::framework::ChannelObject<std::string>> queue_;
90 91 92 93 94 95 96 97 98
};

// general trainer for async execution
// local trainer and distributed trainer are supported
// depends on the assigned device_worker
class MultiTrainer : public TrainerBase {
 public:
  MultiTrainer() {}
  virtual ~MultiTrainer() {}
D
dongdaxiang 已提交
99
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
100 101
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
102
  virtual void InitOtherEnv(const ProgramDesc& main_program);
103 104
  virtual void Run();
  virtual void Finalize();
105
  virtual void InitDumpEnv();
106
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
107
  virtual std::string GetDumpPath(int tid);
108 109 110 111

 protected:
  int thread_num_;
  std::vector<std::thread> threads_;
J
jiaqi 已提交
112
  std::vector<DataFeed*> readers_;
113
  std::vector<std::shared_ptr<DeviceWorker>> workers_;
114
  std::vector<std::string> need_merge_var_names_;
115 116 117 118

  int mpi_rank_;
  int mpi_size_;
  int dump_file_num_;
119 120 121 122 123 124
};

class DistMultiTrainer : public MultiTrainer {
 public:
  DistMultiTrainer() {}
  virtual ~DistMultiTrainer() {}
D
dongdaxiang 已提交
125
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
126 127
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
128
  virtual void InitOtherEnv(const ProgramDesc& main_program);
129
  virtual void Run();
130
  virtual void Finalize();
131 132
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
133
  virtual void InitDumpEnv();
134
  virtual Scope* GetWorkerScope(int thread_id);
T
Thunderbrook 已提交
135
  virtual void RegisterHeterCallback();
136 137 138 139 140

 protected:
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
};

T
Thunderbrook 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#if (defined PADDLE_WITH_CUDA) && (defined PADDLE_WITH_PSLIB)
class HeterServiceContext {
 public:
  HeterServiceContext() {}
  virtual ~HeterServiceContext() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  void Reset() { push_dense_status_.clear(); }
  int place_num_;
  Scope* scope_{nullptr};
  cudaEvent_t event_;
  std::vector<OperatorBase*> ops_;
  std::vector<::std::future<int32_t>> push_dense_status_;
};

class HeterXpuTrainer : public TrainerBase {
 public:
  HeterXpuTrainer() {}
  virtual ~HeterXpuTrainer() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
  virtual void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set);
  virtual void InitTrainerEnv(const ProgramDesc& main_program,
                              const platform::Place& place);
  virtual void InitOtherEnv(const ProgramDesc& main_program);
  virtual void Run();
  virtual void Finalize();
  virtual void DumpWork(int tid);
  virtual void RegisterServiceHandler();
  virtual int RunTask(const HeterRequest* request, HeterResponse* response);
  virtual Scope* GetWorkerScope(int thread_id);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  template <typename T>
  void HeterMemCpy(LoDTensor* tensor, LoDTensor* root_tensor,
                   const paddle::platform::Place& thread_place,
                   cudaStream_t stream);
  void CreateThreadParam(const ProgramDesc& program, int num);
  template <typename T>
  void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
  int EndPass(const HeterRequest* request, HeterResponse* response);
  int StopService(const HeterRequest* request, HeterResponse* response);

 protected:
  DownpourWorkerParameter param_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  std::vector<std::string> need_merge_var_names_;
  float scale_datanorm_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  bool running_;
  paddle::platform::Place place_;
  std::mutex mutex_;
  ProgramDesc program_;
  std::condition_variable cond_;
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  std::vector<OperatorBase*> ops_;
  std::vector<std::string> op_names_;
  std::vector<Scope*> place_scopes_;
  BtObjectPool<HeterServiceContext> object_pool_;
  std::vector<cudaStream_t> copy_streams_;
  std::vector<platform::Place> places_;
  std::vector<cudaEvent_t> events_;
};
#endif

216
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
217 218 219 220 221 222 223
class PipelineTrainer : public TrainerBase {
 public:
  PipelineTrainer() {}
  ~PipelineTrainer() override {}
  void Initialize(const TrainerDesc& trainer_desc, Dataset* data_set) override;
  void InitTrainerEnv(const ProgramDesc& main_program,
                      const platform::Place& place) override;
H
hutuxian 已提交
224
  void InitOtherEnv(const ProgramDesc& main_program) override;
H
hutuxian 已提交
225 226
  void Run() override;
  void Finalize() override;
227
  virtual Scope* GetWorkerScope(int thread_id);
H
hutuxian 已提交
228 229
  void InitDumpEnv() override;
  virtual std::string GetDumpPath(int tid);
L
lilong12 已提交
230
  void GetSkipVars(int section_id, const ProgramDesc& main_program);
H
hutuxian 已提交
231 232 233

 protected:
  int section_num_;
L
lilong12 已提交
234 235 236 237 238 239
  int num_microbatches_;
  int start_cpu_core_id_;
  std::vector<std::string> feed_var_names_;
  std::vector<platform::Place> places_;
  std::vector<std::vector<std::string>> skip_vars_;
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
240 241

  std::vector<std::thread> section_threads_;
L
lilong12 已提交
242 243 244 245 246 247 248 249 250 251 252
  // worker: [section_id]
  std::vector<std::shared_ptr<paddle::framework::DeviceWorker>> workers_;
  // minibatch_scopes_: [section_id]
  std::vector<Scope*> minibatch_scopes_;
  // microbatch_scopes_: [section_id][microbatch_id]
  std::vector<std::vector<Scope*>> microbatch_scopes_;

  void CopyParameters(int section_id, int microbatch_id,
                      const ProgramDesc& program, const platform::Place& place);
  bool isPersistableVarGrad(std::string name);
  bool isPersistable(VarDesc* var);
H
hutuxian 已提交
253 254
};
#endif
L
lilong12 已提交
255

256 257
}  // namespace framework
}  // namespace paddle