device_worker.h 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21 22
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
X
xujiaqi01 已提交
23 24 25 26
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
27 28 29
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
T
Thunderbrook 已提交
30
#include "paddle/fluid/framework/heter_service.h"
31 32 33 34 35 36 37 38
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
39
#include "paddle/fluid/platform/port.h"
40 41
#include "paddle/fluid/platform/timer.h"

W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
class LoDTensor;
class ProgramDesc;
class Scope;
class Tensor;
}  // namespace framework
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

54
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
55 56 57
#include "paddle/fluid/platform/nccl_helper.h"
#endif

58 59 60
namespace paddle {
namespace framework {

61
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
62 63 64
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

65 66
class FleetWrapper;

T
Thunderbrook 已提交
67 68 69 70
#ifdef PADDLE_WITH_PSLIB
class HeterWrapper;
#endif

71 72 73 74
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
T
Thunderbrook 已提交
75 76 77 78 79 80 81 82 83
#ifdef PADDLE_WITH_CUDA
  void AddStream(const cudaStream_t stream) { copy_streams_.push_back(stream); }

  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
84 85
  int Start();
  void Stop();
86
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
87 88 89
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
90
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
91
  void CreatePinVar();
92 93
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
94 95 96 97 98 99 100
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

101 102
  static std::shared_ptr<PullDenseWorker> s_instance_;

103
 private:
104
  PullDenseWorker() : root_scope_(NULL) {}
105 106 107 108 109 110
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
111
  DownpourWorkerParameter dwp_param_;
112 113 114
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
115 116 117 118 119
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
120 121 122 123 124 125 126 127 128 129 130 131 132 133

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
134
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
135 136 137 138 139 140

#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
#endif
141 142 143 144 145
};

// should incorporate different type of device
class DeviceWorker {
 public:
146 147 148 149
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
150 151
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
152
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
153 154
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
155
  virtual void PrintFetchVars() = 0;
156 157 158 159 160
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
161
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
162 163
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
H
hutuxian 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
179 180 181
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
182 183 184
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
185
  virtual Scope* GetThreadScope() { return thread_scope_; }
186 187

 protected:
H
hutuxian 已提交
188 189 190
  virtual void DumpParam(const Scope& scope, const int batch_id);
  virtual void DumpField(const Scope& scope, int dump_mode,
                         int dump_interval = 10000);
J
jiaqi 已提交
191
  Scope* root_scope_ = nullptr;
192
  Scope* thread_scope_;
193
  paddle::platform::Place place_;
J
jiaqi 已提交
194
  DataFeed* device_reader_ = nullptr;
D
dongdaxiang 已提交
195 196
  int64_t batch_num_;
  FetchConfig fetch_config_;
197
  bool use_cvm_;
198
  bool no_cvm_;
T
Thunderbrook 已提交
199
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
200 201 202 203 204 205

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
206
  std::vector<std::string> all_param_;
H
hutuxian 已提交
207 208 209 210

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
211 212 213 214 215 216 217 218 219
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
220
  virtual void PrintFetchVars() {}
221 222 223 224 225 226 227 228 229
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
230 231 232 233 234 235
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
236
  virtual void Initialize(const TrainerDesc& desc);
237 238
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
239
  virtual void PrintFetchVars();
240 241
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
242 243
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
244 245 246 247

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
248

249 250
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
251
  bool thread_barrier_;
252
  // Scope* thread_scope_;
253 254
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
255
  std::map<std::string, int> stat_var_name_map_;
256 257 258 259 260 261
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
262
  virtual void Initialize(const TrainerDesc& desc);
263
  virtual void TrainFiles();
264
  virtual void TrainFilesWithProfiler();
265 266 267 268 269 270 271

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
272
  void AdjustInsWeight();
X
xujiaqi01 已提交
273 274 275
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
276

277
  DownpourWorkerParameter param_;
278 279 280 281
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
282 283
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
284
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
285 286 287 288
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
289 290 291 292 293 294 295 296 297
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
298 299
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
300 301 302 303 304 305
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
306 307
  // skipped ops
  std::vector<std::string> skip_ops_;
308 309 310 311 312 313 314 315 316 317 318
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
319 320

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
321 322

  std::vector<float> nid_show_;
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
343 344
};

T
Thunderbrook 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
#ifdef PADDLE_WITH_PSLIB
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

426
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
427 428
class SectionWorker : public DeviceWorker {
 public:
L
lilong12 已提交
429
  SectionWorker() { local_batch_id_ = 0; }
H
hutuxian 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

  void SetSectionIndex(int section_id) { section_id_ = section_id; }
L
lilong12 已提交
445
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
446
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
447 448 449
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
450
  }
L
lilong12 已提交
451 452 453
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
454
  }
455
  static void ResetBatchId() { batch_id_ = 0; }
456
  static void ResetThreadCompletedFlag() { threads_completed = false; }
H
hutuxian 已提交
457 458 459 460 461 462 463

  static std::atomic<int> cpu_id_;

 protected:
  void AutoSetCPUAffinity(bool reuse);
  int section_id_;
  int thread_id_;
L
lilong12 已提交
464 465 466 467
  int num_microbatches_;
  std::vector<Scope*> microbatch_scopes_;
  std::vector<std::string> skip_vars_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
468 469

  std::vector<std::unique_ptr<OperatorBase>> ops_;
L
lilong12 已提交
470 471 472 473 474 475
  static std::mutex thread_mutex;
  static std::condition_variable thread_condition;
  static bool threads_completed;
  std::shared_ptr<framework::ProgramDesc> program_;
  static uint64_t batch_id_;
  uint64_t local_batch_id_;
H
hutuxian 已提交
476 477 478 479

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
480

481 482
}  // namespace framework
}  // namespace paddle