/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include // NOLINT #include #include // NOLINT #include // NOLINT #include // NOLINT #include // NOLINT #include #include "paddle/fluid/framework/data_feed.h" #include "paddle/fluid/framework/heter_service.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/trainer_desc.pb.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/operators/reader/blocking_queue.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/port.h" #include "paddle/fluid/platform/timer.h" namespace paddle { namespace framework { class LoDTensor; class ProgramDesc; class Scope; class Tensor; } // namespace framework namespace platform { class DeviceContext; } // namespace platform } // namespace paddle #if defined(PADDLE_WITH_NCCL) #include "paddle/fluid/platform/nccl_helper.h" #endif namespace paddle { namespace framework { std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end); std::pair GetTensorBound(LoDTensor* tensor, int index); bool CheckValidOutput(LoDTensor* tensor, size_t batch_size); class FleetWrapper; #ifdef PADDLE_WITH_PSLIB class HeterWrapper; #endif class PullDenseWorker { public: virtual ~PullDenseWorker() {} virtual void Initialize(const TrainerDesc& param); #ifdef PADDLE_WITH_CUDA void AddStream(const cudaStream_t stream) { copy_streams_.push_back(stream); } void AddPlace(const paddle::platform::Place place) { places_.push_back(place); } void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); } #endif int Start(); void Stop(); void SetRootScope(Scope* scope) { root_scope_ = scope; } void IncreaseThreadVersion(int thread_id, uint64_t table_id); void ResetThreadVersion(uint64_t table_id); void Wait(std::vector<::std::future>* status_vec); void PullDense(bool force_update = false); void CreatePinVar(); int GetThreadIdByScope(const Scope* scope); void SetThreadIdByScope(const Scope* scope, int tid); static std::shared_ptr GetInstance() { if (NULL == s_instance_) { s_instance_.reset(new paddle::framework::PullDenseWorker()); } return s_instance_; } static std::shared_ptr s_instance_; private: PullDenseWorker() : root_scope_(NULL) {} void Run(); bool CheckUpdateParam(uint64_t table_id); private: std::shared_ptr fleet_ptr_; PullDenseWorkerParameter param_; DownpourWorkerParameter dwp_param_; Scope* root_scope_; bool running_; static std::map last_versions_; static std::map current_version_; static std::mutex mutex_for_version_; static std::map> training_versions_; static std::map> dense_value_names_; std::thread t_; int thread_num_; int sleep_time_ms_; int threshold_; std::vector<::std::future> pull_dense_status_; uint32_t pull_dense_fail_times_ = 0; std::vector base_norm_param_; std::vector mean_; std::vector scale_; float squared_sum_epsilon_ = 1e-4; std::mutex mutex_for_mean_scale_; float total_batch_num_ = 0; std::unordered_map scope_to_thread_id_; #ifdef PADDLE_WITH_CUDA std::vector copy_streams_; std::vector places_; std::vector thread_scopes_; #endif }; // should incorporate different type of device class DeviceWorker { public: DeviceWorker() { no_cvm_ = true; use_cvm_ = false; } virtual ~DeviceWorker() {} virtual void Initialize(const TrainerDesc& desc) = 0; virtual void InitRandomDumpConfig(const TrainerDesc& desc); virtual void SetDeviceIndex(int tid) = 0; virtual void TrainFiles() = 0; virtual void PrintFetchVars() = 0; virtual void TrainFilesWithProfiler() = 0; virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0; // will make this zero copy in the future virtual void BindingDataFeedMemory() = 0; virtual void SetRootScope(Scope* root_scope); virtual void SetDataFeed(DataFeed* data_feed); virtual void SetWorkerNum(int num) {} virtual void CacheProgram(const ProgramDesc& main_program) {} virtual void SetNeedDumpField(bool need_dump_field) { need_dump_field_ = need_dump_field; } virtual void SetNeedDumpParam(bool need_dump_param) { need_dump_param_ = need_dump_param; } virtual void SetDumpFieldVector(const std::vector& dump_fields) { dump_fields_ = &dump_fields; } virtual void SetDumpParamVector(const std::vector& dump_param) { dump_param_ = &dump_param; } virtual void SetChannelWriter(ChannelObject* queue) { writer_.Reset(queue); } virtual void SetPlace(const paddle::platform::Place& place) { place_ = place; } virtual void SetReaderPlace(const paddle::platform::Place& place) { device_reader_->SetPlace(place); } virtual Scope* GetThreadScope() { return thread_scope_; } protected: virtual void DumpParam(const Scope& scope, const int batch_id); virtual void DumpField(const Scope& scope, int dump_mode, int dump_interval = 10000); Scope* root_scope_ = nullptr; Scope* thread_scope_; paddle::platform::Place place_; DataFeed* device_reader_ = nullptr; int64_t batch_num_; FetchConfig fetch_config_; bool use_cvm_; bool no_cvm_; TrainerDesc trainer_desc_; // dump params or grads for debug bool need_dump_param_; bool need_dump_field_; const std::vector* dump_param_; const std::vector* dump_fields_; std::vector all_param_; int dump_mode_ = 0; int dump_interval_ = 10000; ChannelWriter writer_; }; class CPUWorkerBase : public DeviceWorker { public: CPUWorkerBase() {} virtual ~CPUWorkerBase() {} virtual void SetDeviceIndex(int tid) { thread_id_ = tid; } virtual void TrainFiles() = 0; virtual void TrainFilesWithProfiler() {} virtual void PrintFetchVars() {} virtual void CreateDeviceResource(const ProgramDesc& main_prog) {} protected: int thread_id_; }; class HogwildWorker : public CPUWorkerBase { public: HogwildWorker() {} virtual ~HogwildWorker() { for (OperatorBase* op : ops_) { delete op; } std::vector().swap(ops_); } virtual void Initialize(const TrainerDesc& desc); virtual void TrainFiles(); virtual void TrainFilesWithProfiler(); virtual void PrintFetchVars(); virtual void CreateDeviceResource(const ProgramDesc& main_prog); virtual void BindingDataFeedMemory(); template void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim); protected: void CreateThreadOperators(const ProgramDesc& program); void CreateThreadScope(const ProgramDesc& program); std::vector op_names_; std::vector ops_; bool thread_barrier_; // Scope* thread_scope_; HogwildWorkerParameter param_; std::vector skip_ops_; std::map stat_var_name_map_; }; class DownpourWorker : public HogwildWorker { public: DownpourWorker() {} virtual ~DownpourWorker() {} virtual void Initialize(const TrainerDesc& desc); virtual void TrainFiles(); virtual void TrainFilesWithProfiler(); protected: std::shared_ptr fleet_ptr_; std::shared_ptr pull_dense_worker_; void FillSparseValue(size_t table_id); void PushGradients(); void CollectLabelInfo(size_t table_id); void AdjustInsWeight(); void CopySparseTable(); void CopyDenseTable(); void CopyDenseVars(); DownpourWorkerParameter param_; // copy table CopyTableConfig copy_table_config_; std::vector> copy_sparse_tables_; std::unordered_map> feasign_set_; // actually pushed feasign of each table std::map> sparse_push_keys_; std::map> sparse_key_names_; // feasign std::map> features_; // feasign embedding std::map>> feature_values_; std::map> sparse_value_names_; // adjust ins weight AdjustInsWeightConfig adjust_ins_weight_config_; // check nan and inf during training std::vector check_nan_var_names_; bool need_to_push_sparse_; // feasign stats std::map> feature_labels_; std::map> sparse_grad_names_; // feasign embedding gradient std::map>> feature_grads_; std::vector<::std::future> push_sparse_status_; bool dump_slot_; bool need_to_push_dense_; std::map> dense_grad_names_; float scale_datanorm_; std::vector<::std::future> push_dense_status_; // skipped ops std::vector skip_ops_; // just save the value in param_ for easy access std::map label_var_name_; std::map> dense_value_names_; std::map table_dependency_; std::vector> copy_dense_tables_; private: // std::vector dump_param_; // just save the value in param_ for easy access // std::map label_var_name_; // std::map> dense_value_names_; std::shared_ptr _pull_dense_worker; std::vector nid_show_; // std::map table_dependency_; // std::vector> copy_dense_tables_; }; class DownpourWorkerOpt : public DownpourWorker { public: DownpourWorkerOpt() {} virtual ~DownpourWorkerOpt() {} virtual void CreateDeviceResource(const ProgramDesc& main_prog); virtual void Initialize(const TrainerDesc& desc); virtual void TrainFiles(); protected: void CreateThreadOperatorsWithRerank(const ProgramDesc& program); std::vector> loss_ops_; std::vector> loss_op_names_; std::vector loss_names_; std::string async_wait_name_; int async_index_ = -1; uint64_t async_tid_ = 0; }; #ifdef PADDLE_WITH_PSLIB class HeterCpuWorker : public HogwildWorker { public: HeterCpuWorker() {} virtual ~HeterCpuWorker() {} virtual void Initialize(const TrainerDesc& desc); virtual void TrainFiles(); virtual void TrainFilesWithProfiler(); virtual void SetNeedDump(bool need_dump_field); virtual void SetChannelWriter(ChannelObject* queue); virtual void SetWorkerNum(int num) { worker_num_ = num; } virtual void Schedule(int taskid); virtual void JumpContext(std::shared_ptr task); virtual void CacheProgram(const ProgramDesc& main_program) { new (&program_) ProgramDesc(main_program); } virtual void GetXpuOpIndex(); protected: std::shared_ptr fleet_ptr_; std::shared_ptr heter_ptr_; std::shared_ptr pull_dense_worker_; void FillSparseValue(std::shared_ptr task, size_t table_id); void PushGradients(); void CollectLabelInfo(std::shared_ptr task, size_t table_id); void AdjustInsWeight(std::shared_ptr task); void DumpParam(); void CopySparseTable(); void CopyDenseTable(); void CopyDenseVars(); private: int mpi_rank_; int worker_num_; int xpu_begin_op_index_; int xpu_end_op_index_; ProgramDesc program_; HeterObjectPool object_pool_; HeterList> run_queue_; HeterList> wait_queue_; bool need_dump_param_; std::vector dump_param_; bool need_to_push_dense_; bool need_dump_field_; bool dump_slot_; bool need_to_push_sparse_; std::vector dump_fields_; ChannelWriter writer_; DownpourWorkerParameter param_; float scale_datanorm_; // just save the value in param_ for easy access std::map label_var_name_; std::map> sparse_key_names_; std::map> sparse_value_names_; std::map> sparse_grad_names_; std::map> dense_value_names_; std::map> dense_grad_names_; platform::Place root_place_; // actually pushed feasign of each table std::map> sparse_push_keys_; // skipped ops std::vector skip_ops_; std::vector<::std::future> push_sparse_status_; std::vector<::std::future> push_dense_status_; // adjust ins weight AdjustInsWeightConfig adjust_ins_weight_config_; std::vector nid_show_; // check nan and inf during training std::vector check_nan_var_names_; // copy table CopyTableConfig copy_table_config_; std::map table_dependency_; std::vector> copy_sparse_tables_; std::vector> copy_dense_tables_; std::unordered_map> feasign_set_; }; #endif #if defined(PADDLE_WITH_NCCL) class SectionWorker : public DeviceWorker { public: SectionWorker() { local_batch_id_ = 0; } ~SectionWorker() override {} void Initialize(const TrainerDesc& desc) override; void BindingDataFeedMemory() override {} void CreateDeviceResource(const ProgramDesc& main_prog) override{}; void TrainFiles() override; void TrainFilesWithProfiler() override; void PrintFetchVars() override {} const platform::Place& place() const { return place_; } void SetSectionIndex(int section_id) { section_id_ = section_id; } void SetDeviceIndex(int tid) override {} void SetThreadIndex(int thread_id) { thread_id_ = thread_id; } void SetMicrobatchNum(int num) { num_microbatches_ = num; } void SetMicrobatchScopes(const std::vector& scope) { microbatch_scopes_ = scope; } void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; } void SetSkipVars(const std::vector& skip_vars) { skip_vars_ = skip_vars; } static void ResetBatchId() { batch_id_ = 0; } static void ResetThreadCompletedFlag() { threads_completed = false; } static std::atomic cpu_id_; protected: void AutoSetCPUAffinity(bool reuse); int section_id_; int thread_id_; int num_microbatches_; std::vector microbatch_scopes_; std::vector skip_vars_; const Scope* minibatch_scope_; std::vector> ops_; static std::mutex thread_mutex; static std::condition_variable thread_condition; static bool threads_completed; std::shared_ptr program_; static uint64_t batch_id_; uint64_t local_batch_id_; platform::DeviceContext* dev_ctx_ = nullptr; }; #endif } // namespace framework } // namespace paddle