operator.cc 41.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
35
DECLARE_bool(check_nan_inf);
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
37 38 39
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
40

Q
Qiao Longfei 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47 48 49
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
50

51 52
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
53
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
54 55
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
56 57
  }

M
minqiyang 已提交
58 59 60 61 62 63 64 65 66
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
67 68 69 70 71
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
72 73 74 75 76 77
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
78 79 80 81 82
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
83

M
minqiyang 已提交
84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
87 88
      return "";
    }
Y
Yu Yang 已提交
89
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
90
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
91 92 93 94
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
95
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
96
    }
D
dzhwinter 已提交
97 98 99 100 101
  } else {
    return "";
  }
}

102 103 104 105 106 107
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
108 109
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
110 111 112 113 114
  }

  return -1;
}

115
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
116 117 118 119 120 121 122
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
123 124 125
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
126 127 128 129 130
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
131 132 133 134 135
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
136
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
137 138 139 140 141 142
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
143
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
144 145 146 147 148 149
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

150
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
151 152 153
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
154
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
155
      PADDLE_THROW("Cannot run operator on place %s", place);
156
#else
P
peizhilin 已提交
157 158
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
159
#endif
P
peizhilin 已提交
160
    }
P
peizhilin 已提交
161

P
peizhilin 已提交
162 163 164 165 166
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
167
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
168 169 170 171 172
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
173
  } catch (platform::EnforceNotMet& exception) {
174
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
175
    throw std::move(exception);
176 177 178 179 180 181
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
182
  } catch (...) {
183
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
184
    std::rethrow_exception(std::current_exception());
185
  }
186 187
}

188
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
189
  return inputs_.find(name) != inputs_.end();
190 191
}

192
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
193
  auto& ins = Inputs(name);
194 195 196 197 198
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
199
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
200 201
}

Y
Yu Yang 已提交
202 203
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
204
  auto it = inputs_.find(name);
205 206
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
207
  return it->second;
Y
Yan Chunwei 已提交
208 209
}

210
bool OperatorBase::HasOutputs(const std::string& name) const {
211
  if (outputs_.find(name) != outputs_.end()) {
212 213 214 215 216 217
    return true;
  } else {
    return false;
  }
}

218
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
219
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
220
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
221 222
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
223
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
224 225
}

Y
Yu Yang 已提交
226 227
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
228
  auto it = outputs_.find(name);
229 230
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
231
  return it->second;
Y
Yan Chunwei 已提交
232 233
}

234
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
235
  std::stringstream ss;
Y
Yu Yang 已提交
236
  ss << "Op(" << type_ << "), inputs:{";
237

238
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
239 240
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
241 242
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
243 244
  }

Y
Yu Yang 已提交
245 246
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
247 248
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
249 250
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
251 252
      auto var_name = input.second[i];
      ss << var_name;
253
      if (scope) {
Q
Qiao Longfei 已提交
254 255 256 257 258 259 260
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
261 262 263
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
264
          ss << ":" << dtype;
265 266
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
267
        }
268
      }
Y
Yu Yang 已提交
269 270 271
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
272
    }
Y
Yu Yang 已提交
273
    ss << "]";
Y
Yu Yang 已提交
274 275
    ++it;
    if (it != inputs_.end()) {
276 277
      ss << ", ";
    }
Q
Qiao Longfei 已提交
278
  }
Y
Yu Yang 已提交
279
  ss << "}, outputs:{";
Y
Yu Yang 已提交
280 281
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
282 283
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
284 285
      auto var_name = output.second[i];
      ss << var_name;
286
      if (scope) {
Q
Qiao Longfei 已提交
287 288 289 290 291 292 293
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
294 295
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
296 297
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
298
        }
299
      }
Y
Yu Yang 已提交
300 301 302
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
303
    }
Y
Yu Yang 已提交
304
    ss << "]";
Y
Yu Yang 已提交
305 306
    ++it;
    if (it != outputs_.end()) {
307 308
      ss << ", ";
    }
Q
Qiao Longfei 已提交
309
  }
Y
Yu Yang 已提交
310
  ss << "}.";
Q
Qiao Longfei 已提交
311 312 313
  return ss.str();
}

Y
Yu Yang 已提交
314
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
315 316
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
317
                           const AttributeMap& attrs)
S
sneaxiy 已提交
318 319 320 321 322 323
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
324 325
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
326
}
327

Q
qijun 已提交
328 329
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
330
  for (auto& o : inputs_) {
Q
qijun 已提交
331 332 333 334 335 336
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
337 338 339 340 341 342 343 344 345 346
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
347
  auto& info = Info();
Y
Yu Yang 已提交
348 349

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
350
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
351 352 353 354 355 356 357 358 359
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
360 361
}

362
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
363
  if (info_ == nullptr || info_->proto_ == nullptr) return;
364

S
sneaxiy 已提交
365
  for (auto& in : info_->Proto().inputs()) {
366 367 368 369
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
370 371
  }

S
sneaxiy 已提交
372
  for (auto& out : info_->Proto().outputs()) {
373 374 375 376 377
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
394
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
395
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
396 397
}

C
chengduo 已提交
398
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
399 400 401 402
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
403
  } else {
Y
Yang Yang 已提交
404
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
405
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
406 407 408
  }
}

C
chengduo 已提交
409
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
410
  if (var->IsType<LoDTensor>()) {
411
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
412
  } else if (var->IsType<SelectedRows>()) {
413
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
414
  } else {
Y
Yang Yang 已提交
415
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
416
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
417 418 419
  }
}

420
bool ExecutionContext::HasInput(const std::string& name) const {
421
  auto* var = InputVar(name);
422 423 424 425
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
426
  auto* var = OutputVar(name);
427 428 429
  return var != nullptr;
}

X
Xin Pan 已提交
430 431 432 433
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

434 435 436 437 438
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::AlreadyExists(
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
439 440 441
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
442
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
443 444 445 446 447 448 449 450 451
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

452
template <>
453
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
454
  return Input<LoDTensor>(name);
455 456 457
}

template <>
458
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
459
    const std::string& name) const {
X
Xin Pan 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
473
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
474 475 476 477 478
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

479
template <>
480
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
481
  return Output<LoDTensor>(name);
482 483 484
}

template <>
485
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
486
    const std::string& name) const {
487 488 489 490 491
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
492
  std::vector<Tensor*> res;
493 494 495 496 497
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
498
                 });
499 500 501
  return res;
}

Y
Yu Yang 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

517 518
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
519 520
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
521
      : op_(op), ctx_(ctx) {}
522 523

  bool HasInput(const std::string& name) const override {
524
    // has only one input
X
Xin Pan 已提交
525
    const auto& ins = ctx_.inputs;
526 527
    auto it = ins.find(name);
    if (it == ins.end()) {
528 529
      return false;
    }
530
    const auto& in = it->second;
X
Xin Pan 已提交
531
    if (in.size() == 0) return false;
T
tensor-tang 已提交
532
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
533
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
534
    return in[0] != nullptr;
535 536 537
  }

  bool HasOutput(const std::string& name) const override {
538
    // has only one output
X
Xin Pan 已提交
539
    const auto& outs = ctx_.outputs;
540 541
    auto it = outs.find(name);
    if (it == outs.end()) {
542 543
      return false;
    }
544
    const auto& out = it->second;
X
Xin Pan 已提交
545
    if (out.size() == 0) {
546 547
      return false;
    }
T
tensor-tang 已提交
548 549
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
550
    return out[0] != nullptr;
551 552 553
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
554 555
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
556
    if (it == ins.end() || it->second.empty()) {
557 558
      return false;
    }
X
Xin Pan 已提交
559 560
    for (auto& input : it->second) {
      if (input == nullptr) {
561 562 563 564 565 566 567
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
568 569
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
570
    if (it == outs.end() || it->second.empty()) {
571 572
      return false;
    }
X
Xin Pan 已提交
573 574
    for (auto& output : it->second) {
      if (output == nullptr) {
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

593 594
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
595 596 597 598 599 600 601 602 603
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
604 605

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
606
                   "The type of %s and %s is not the same.", in, out);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
625 626
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
627 628 629 630 631 632 633 634
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
635
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
636
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
637 638
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
639
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
640 641
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
642

M
mozga-intel 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
662 663
  }

664
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
665
    PADDLE_THROW(
666
        "GetLoDLevel is only used in compile time. The calculation of "
667 668 669 670
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
  }

671 672
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
673
    PADDLE_THROW(
674
        "SetLoDLevel is only used in compile time. The calculation of "
675 676
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
C
chengduo 已提交
677 678
  }

679 680
  bool IsRuntime() const override { return true; }

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
713 714 715 716 717 718 719 720 721 722
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

737
 protected:
X
Xin Pan 已提交
738
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
739
    PADDLE_ENFORCE_NOT_NULL(var);
740 741 742 743 744
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
745
      PADDLE_THROW(
X
Xin Pan 已提交
746
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
747
          "type_id is %s.",
S
sneaxiy 已提交
748
          ToTypeName(var->Type()));
F
fengjiayi 已提交
749 750 751
    }
  }

X
Xin Pan 已提交
752 753 754 755 756 757 758 759
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
760
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
761
    PADDLE_THROW("Only compile time support this method");
762 763
  }

X
Xin Pan 已提交
764
  void SetDim(Variable* var, const DDim& dim) {
765 766 767 768 769
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
770
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
771
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
772 773 774 775 776 777 778 779 780 781 782 783
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
784 785 786
    }
  }

F
fengjiayi 已提交
787 788
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
789
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
790 791
  }

X
Xin Pan 已提交
792 793 794 795 796 797 798 799 800 801 802
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
803 804 805
    return ToVarType(var->Type());
  }

806 807 808 809 810 811 812 813 814 815 816 817 818 819
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
820 821
  }

822
  const OperatorBase& op_;
X
Xin Pan 已提交
823
  const RuntimeContext& ctx_;
824 825
};

826 827
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
828 829 830 831
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
832 833
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
834 835 836
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
837
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
838
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
839
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
840 841
}

B
baojun-nervana 已提交
842
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
843 844 845
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
846 847 848
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
849 850 851 852 853 854 855 856 857 858
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
859 860
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
861 862
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
863 864 865
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
866
      HasAttr(kAllKernelsMustComputeRuntimeShape))
867 868
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
869 870 871 872
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
873 874 875 876 877 878
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
879 880 881 882 883 884 885 886
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
887
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
888
  auto* dev_ctx = pool.Get(place);
889

890
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
891
    ChooseKernel(*runtime_ctx, scope, place);
892 893
  }

L
Liu Yiqun 已提交
894
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
895

Y
yuyang18 已提交
896 897
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
898
  auto* transfer_scope =
899
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
900

Y
yuyang18 已提交
901 902 903 904
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

905 906
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
907
  }
Q
QI JUN 已提交
908

909
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
910
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
911 912
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
913 914
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
915 916
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
917

Y
yuyang18 已提交
918 919 920
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
921 922
  }

D
dzhwinter 已提交
923
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
924
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
925
    dev_ctx->Wait();
D
dzhwinter 已提交
926
  }
C
chengduoZH 已提交
927

P
pkpk 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
947 948
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
949
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
950 951
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
952
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
953
      } else if (var->IsType<framework::SelectedRows>()) {
954 955
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
956 957 958
      }
    }
  }
959 960 961 962 963 964 965

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
966
}
X
Xin Pan 已提交
967

L
Liu Yiqun 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

1004 1005 1006 1007 1008
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1009 1010
}

Y
yuyang18 已提交
1011 1012 1013 1014
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1015
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1016 1017 1018
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1019
    auto* original_tensor =
C
chengduo 已提交
1020
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1021
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1022 1023
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1024
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1025 1026 1027 1028
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1029
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1030
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1031 1032
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1033
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1034

1035
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1036 1037 1038 1039
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1040 1041
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1042 1043 1044
    }
  }

Y
yuyang18 已提交
1045
  for (auto& var_name_item : Inputs()) {
1046
    if (no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0) {
G
gongweibao 已提交
1047
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1048
              << " in Operator " << type_;
S
sneaxiy 已提交
1049 1050 1051
      continue;
    }

X
Xin Pan 已提交
1052 1053 1054 1055
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1056
      auto* var = input_vars[i];
X
Xin Pan 已提交
1057

Y
yuyang18 已提交
1058
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1059
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1060 1061 1062
        continue;
      }

C
chengduo 已提交
1063
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1081 1082
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1096 1097 1098 1099 1100 1101 1102 1103 1104
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1105 1106
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1107
        enable_cache_transfer_scope_ = true;
1108
      }
1109
      if (!new_scope) {
Y
yuyang18 已提交
1110 1111
        new_scope = &scope.NewScope();
      }
1112 1113 1114 1115
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1116
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1117 1118 1119
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1120
      if (enable_cache_runtime_context_) {
1121 1122
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1123 1124

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1125
      input_vars[i] = trans_var;
1126

Y
yuyang18 已提交
1127
      Tensor out;
Y
yuyang18 已提交
1128
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1129 1130 1131 1132 1133 1134
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  const std::vector<const Variable*> vars = ctx.MultiInputVar(name);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
      }
      if (t != nullptr) {
1154 1155 1156 1157 1158 1159
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
                Type(), name, ctx.Inputs(name).at(i)));
1160
        proto::VarType::Type tmp = t->type();
1161 1162 1163 1164 1165 1166 1167 1168
        PADDLE_ENFORCE(
            tmp == *data_type || *data_type == dafault_data_type,
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1169 1170 1171 1172 1173 1174
        *data_type = tmp;
      }
    }
  }
}

1175
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1176
    const ExecutionContext& ctx) const {
1177 1178 1179
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1180
  for (auto& input : ctx.Context().inputs) {
1181
    ParseInputDataType(ctx, input.first, &data_type);
Y
Yu Yang 已提交
1182
  }
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1199
  return data_type;
Y
Yu Yang 已提交
1200
}
1201

1202 1203 1204 1205 1206 1207 1208 1209
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1210 1211
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1212 1213
}

Q
Qiao Longfei 已提交
1214
}  // namespace framework
L
liaogang 已提交
1215
}  // namespace paddle