operator.cc 41.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20
#include <sstream>
#include <string>
S
sneaxiy 已提交
21
#include <unordered_set>
P
peizhilin 已提交
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
25
#include "paddle/fluid/framework/lod_tensor.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
35
DECLARE_bool(check_nan_inf);
Q
Qiao Longfei 已提交
36
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
37 38 39
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
40

Q
Qiao Longfei 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47 48 49
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
50

51 52
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
53
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
54 55
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
56 57
  }

M
minqiyang 已提交
58 59 60 61 62 63 64 65 66
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
67 68 69 70 71
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
72 73 74 75 76 77
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
78 79 80 81 82
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
83

M
minqiyang 已提交
84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
87 88
      return "";
    }
Y
Yu Yang 已提交
89
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
90
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
91 92 93 94
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
95
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
96
    }
D
dzhwinter 已提交
97 98 99 100 101
  } else {
    return "";
  }
}

102 103 104 105 106 107
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
108 109
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
110 111 112 113 114
  }

  return -1;
}

115
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
116 117 118 119 120 121 122
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
123 124 125
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
126 127 128 129 130
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
131 132 133 134 135
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
136
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
137 138 139 140 141 142
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
143
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
144 145 146 147 148 149
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

150
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
151 152 153
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
154
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
155
      PADDLE_THROW("Cannot run operator on place %s", place);
156
#else
P
peizhilin 已提交
157 158
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
159
#endif
P
peizhilin 已提交
160
    }
P
peizhilin 已提交
161

P
peizhilin 已提交
162 163 164 165 166
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
167
      platform::RecordEvent record_event(Type());
P
peizhilin 已提交
168 169 170 171 172
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
    VLOG(3) << place << " " << DebugStringEx(&scope);
173
  } catch (platform::EnforceNotMet& exception) {
174
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
175
    throw std::move(exception);
176 177 178 179 180 181
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
182
  } catch (...) {
183
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
184
    std::rethrow_exception(std::current_exception());
185
  }
186 187
}

188
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
189
  return inputs_.find(name) != inputs_.end();
190 191
}

192
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
193
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
194
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
195 196
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
197
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
198 199
}

Y
Yu Yang 已提交
200 201
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
202
  auto it = inputs_.find(name);
203 204
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
205
  return it->second;
Y
Yan Chunwei 已提交
206 207
}

208
bool OperatorBase::HasOutputs(const std::string& name) const {
209
  if (outputs_.find(name) != outputs_.end()) {
210 211 212 213 214 215
    return true;
  } else {
    return false;
  }
}

216
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
217
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
218
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
219 220
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
221
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
222 223
}

Y
Yu Yang 已提交
224 225
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
226
  auto it = outputs_.find(name);
227 228
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
229
  return it->second;
Y
Yan Chunwei 已提交
230 231
}

232
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
233
  std::stringstream ss;
Y
Yu Yang 已提交
234
  ss << "Op(" << type_ << "), inputs:{";
235 236 237 238 239 240 241

  std::unordered_set<std::string> no_need_buffer_vars;
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
        Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs());
  }

Y
Yu Yang 已提交
242 243
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
244
    bool is_no_need_buffer_var = (no_need_buffer_vars.count(input.first) > 0);
Y
Yu Yang 已提交
245 246
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
247 248
      auto var_name = input.second[i];
      ss << var_name;
249
      if (scope) {
Q
Qiao Longfei 已提交
250 251 252 253 254 255 256
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
257 258 259
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
260
          ss << ":" << dtype;
261 262
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
263
        }
264
      }
Y
Yu Yang 已提交
265 266 267
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
268
    }
Y
Yu Yang 已提交
269
    ss << "]";
Y
Yu Yang 已提交
270 271
    ++it;
    if (it != inputs_.end()) {
272 273
      ss << ", ";
    }
Q
Qiao Longfei 已提交
274
  }
Y
Yu Yang 已提交
275
  ss << "}, outputs:{";
Y
Yu Yang 已提交
276 277
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
278 279
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
280 281
      auto var_name = output.second[i];
      ss << var_name;
282
      if (scope) {
Q
Qiao Longfei 已提交
283 284 285 286 287 288 289
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
290 291
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
292 293
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
294
        }
295
      }
Y
Yu Yang 已提交
296 297 298
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
299
    }
Y
Yu Yang 已提交
300
    ss << "]";
Y
Yu Yang 已提交
301 302
    ++it;
    if (it != outputs_.end()) {
303 304
      ss << ", ";
    }
Q
Qiao Longfei 已提交
305
  }
Y
Yu Yang 已提交
306
  ss << "}.";
Q
Qiao Longfei 已提交
307 308 309
  return ss.str();
}

Y
Yu Yang 已提交
310
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
311 312
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
313
                           const AttributeMap& attrs)
S
sneaxiy 已提交
314 315 316 317 318 319
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
320 321
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
322
}
323

Q
qijun 已提交
324 325
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
326
  for (auto& o : inputs_) {
Q
qijun 已提交
327 328 329 330 331 332
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
343
  auto& info = Info();
Y
Yu Yang 已提交
344 345

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
346
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
356 357
}

358
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
359
  if (info_ == nullptr || info_->proto_ == nullptr) return;
360

S
sneaxiy 已提交
361
  for (auto& in : info_->Proto().inputs()) {
362 363 364 365
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
366 367
  }

S
sneaxiy 已提交
368
  for (auto& out : info_->Proto().outputs()) {
369 370 371 372 373
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
390
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
391
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
392 393
}

C
chengduo 已提交
394
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
395 396 397 398
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
399
  } else {
Y
Yang Yang 已提交
400
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
401
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
402 403 404
  }
}

C
chengduo 已提交
405
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
406
  if (var->IsType<LoDTensor>()) {
407
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
408
  } else if (var->IsType<SelectedRows>()) {
409
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
410
  } else {
Y
Yang Yang 已提交
411
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
412
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
413 414 415
  }
}

416
bool ExecutionContext::HasInput(const std::string& name) const {
417
  auto* var = InputVar(name);
418 419 420 421
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
422
  auto* var = OutputVar(name);
423 424 425
  return var != nullptr;
}

X
Xin Pan 已提交
426 427 428 429 430 431 432 433 434 435
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
436
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
437 438 439 440 441 442 443 444 445
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

446
template <>
447
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
448
  return Input<LoDTensor>(name);
449 450 451
}

template <>
452
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
453
    const std::string& name) const {
X
Xin Pan 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
467
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
468 469 470 471 472
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

473
template <>
474
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
475
  return Output<LoDTensor>(name);
476 477 478
}

template <>
479
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
480
    const std::string& name) const {
481 482 483 484 485
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
486
  std::vector<Tensor*> res;
487 488 489 490 491
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
492
                 });
493 494 495
  return res;
}

Y
Yu Yang 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

511 512
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
513 514
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
G
Gabor Buella 已提交
515
      : op_(op), ctx_(ctx) {}
516 517

  bool HasInput(const std::string& name) const override {
518
    // has only one input
X
Xin Pan 已提交
519
    const auto& ins = ctx_.inputs;
520 521
    auto it = ins.find(name);
    if (it == ins.end()) {
522 523
      return false;
    }
524
    const auto& in = it->second;
X
Xin Pan 已提交
525
    if (in.size() == 0) return false;
T
tensor-tang 已提交
526
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
527
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
528
    return in[0] != nullptr;
529 530 531
  }

  bool HasOutput(const std::string& name) const override {
532
    // has only one output
X
Xin Pan 已提交
533
    const auto& outs = ctx_.outputs;
534 535
    auto it = outs.find(name);
    if (it == outs.end()) {
536 537
      return false;
    }
538
    const auto& out = it->second;
X
Xin Pan 已提交
539
    if (out.size() == 0) {
540 541
      return false;
    }
T
tensor-tang 已提交
542 543
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
544
    return out[0] != nullptr;
545 546 547
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
548 549
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
550
    if (it == ins.end() || it->second.empty()) {
551 552
      return false;
    }
X
Xin Pan 已提交
553 554
    for (auto& input : it->second) {
      if (input == nullptr) {
555 556 557 558 559 560 561
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
562 563
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
564
    if (it == outs.end() || it->second.empty()) {
565 566
      return false;
    }
X
Xin Pan 已提交
567 568
    for (auto& output : it->second) {
      if (output == nullptr) {
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

587 588
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
589 590 591 592 593 594 595 596 597
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
598 599

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
600
                   "The type of %s and %s is not the same.", in, out);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
619 620
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
621 622 623 624 625 626 627 628
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
629
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
630
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
631 632
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
633
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
634 635
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
636

M
mozga-intel 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
656 657
  }

C
chengduo 已提交
658 659
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
660 661 662 663 664 665 666 667 668 669 670 671
    PADDLE_THROW(
        "DecreaseLoDLevel is only used in compile time. The calculation of "
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
  }

  void IncreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW(
        "IncreaseLoDLevel is only used in compile time. The calculation of "
        "output's actual lod is different among operators so that should be "
        "set in the runtime kernel.");
C
chengduo 已提交
672 673
  }

674 675
  bool IsRuntime() const override { return true; }

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
708 709 710 711 712 713 714 715 716 717
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

732
 protected:
X
Xin Pan 已提交
733
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
734
    PADDLE_ENFORCE_NOT_NULL(var);
735 736 737 738 739
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
740
      PADDLE_THROW(
X
Xin Pan 已提交
741
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
742
          "type_id is %s.",
S
sneaxiy 已提交
743
          ToTypeName(var->Type()));
F
fengjiayi 已提交
744 745 746
    }
  }

X
Xin Pan 已提交
747 748 749 750 751 752 753 754
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
755
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
756
    PADDLE_THROW("Only compile time support this method");
757 758
  }

X
Xin Pan 已提交
759
  void SetDim(Variable* var, const DDim& dim) {
760 761 762 763 764
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
765
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
766
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
767 768 769 770 771 772 773 774 775 776 777 778
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
779 780 781
    }
  }

F
fengjiayi 已提交
782 783
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
784
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
785 786
  }

X
Xin Pan 已提交
787 788 789 790 791 792 793 794 795 796 797
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
798 799 800
    return ToVarType(var->Type());
  }

801 802 803 804 805 806 807 808 809 810 811 812 813 814
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
815 816
  }

817
  const OperatorBase& op_;
X
Xin Pan 已提交
818
  const RuntimeContext& ctx_;
819 820
};

821 822
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
823 824 825 826
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
827 828
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
829 830 831
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
832
                 "Operator %s output Tensor %s contains Inf", op_type, name);
C
chengduoZH 已提交
833
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
834
                 "Operator %s output Tensor %s contains NAN", op_type, name);
C
chengduoZH 已提交
835 836
}

B
baojun-nervana 已提交
837
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
838 839 840
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
841 842 843
  this->InferShape(&infer_shape_ctx);
}

X
polish  
Xin Pan 已提交
844 845 846 847 848 849 850 851 852 853
std::vector<KernelConfig>* OperatorWithKernel::GetKernelConfig(
    const OpKernelType& key) const {
  auto config_iter = kernel_configs_map_.find(key);
  std::vector<KernelConfig>* kernel_configs = nullptr;
  if (config_iter != kernel_configs_map_.end()) {
    kernel_configs = &(config_iter->second);
  }
  return kernel_configs;
}

L
luotao1 已提交
854 855
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
856 857
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
858 859 860
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
861
      HasAttr(kAllKernelsMustComputeRuntimeShape))
862 863
    all_kernels_must_compute_runtime_shape_ = true;
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
864 865 866 867
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
  } else {
    const Scope* cur_scope = &scope;
868 869 870 871 872 873
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
874 875 876 877 878 879 880 881
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
882
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
883
  auto* dev_ctx = pool.Get(place);
884

885
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
886
    ChooseKernel(*runtime_ctx, scope, place);
887 888
  }

L
Liu Yiqun 已提交
889
  std::vector<KernelConfig>* kernel_configs = GetKernelConfig(*kernel_type_);
890

Y
yuyang18 已提交
891 892
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
T
Tao Luo 已提交
893
  auto* transfer_scope =
894
      PrepareData(scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
895

Y
yuyang18 已提交
896 897 898 899
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

900 901
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
902
  }
Q
QI JUN 已提交
903

904
  if (!all_kernels_must_compute_runtime_shape_) {
L
luotao1 已提交
905
    RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, *runtime_ctx);
906 907
    this->InferShape(&infer_shape_ctx);
  }
X
clean  
Xin Pan 已提交
908 909
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
910 911
  (*kernel_func_)(ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx,
                                   kernel_configs));
D
dzhwinter 已提交
912

Y
yuyang18 已提交
913 914 915
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
916 917
  }

D
dzhwinter 已提交
918
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
919
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
920
    dev_ctx->Wait();
D
dzhwinter 已提交
921
  }
C
chengduoZH 已提交
922

P
pkpk 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
942 943
  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
944
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
945 946
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
947
        CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
948
      } else if (var->IsType<framework::SelectedRows>()) {
949 950
        CheckTensorNANOrInf(type_, vname,
                            var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
951 952 953
      }
    }
  }
954 955 956 957 958 959 960

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
961
}
X
Xin Pan 已提交
962

L
Liu Yiqun 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
  }

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx, nullptr));
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

999 1000 1001 1002 1003
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1004 1005
}

Y
yuyang18 已提交
1006 1007 1008 1009
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1010
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1011 1012 1013
    auto* origin_var = scope.FindVar(var_name);
    PADDLE_ENFORCE_NOT_NULL(origin_var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1014
    auto* original_tensor =
C
chengduo 已提交
1015
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1016
    auto* var = transfer_scope.FindVar(var_name);
C
chengduo 已提交
1017 1018
    PADDLE_ENFORCE_NOT_NULL(var, "The var[%s] should not be nullptr.",
                            var_name);
C
chengduo 已提交
1019
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1020 1021 1022 1023
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1024
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1025
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1026 1027
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1028
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

  std::unordered_set<std::string> no_buffer_ins;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = no_buffer_inferer(Inputs(), Outputs(), Attrs());
    }
  }

Y
yuyang18 已提交
1039
  for (auto& var_name_item : Inputs()) {
S
sneaxiy 已提交
1040 1041 1042 1043 1044
    // NOTE(zjl): STL does not guarantee fast std::unordered_set::count when set
    // is empty. At least STL implemented on my mac does calculate hash code
    // of search key even though the set is empty.
    if (!no_buffer_ins.empty() &&
        no_buffer_ins.count(var_name_item.first) > 0) {
G
gongweibao 已提交
1045
      VLOG(7) << "Skip scanning input " << var_name_item.first
S
sneaxiy 已提交
1046
              << " in Operator " << type_;
S
sneaxiy 已提交
1047 1048 1049
      continue;
    }

X
Xin Pan 已提交
1050 1051 1052 1053
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1054
      auto* var = input_vars[i];
X
Xin Pan 已提交
1055

Y
yuyang18 已提交
1056
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1057
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1058 1059 1060
        continue;
      }

C
chengduo 已提交
1061
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1079 1080
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
1094 1095 1096 1097 1098 1099 1100 1101 1102
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1103 1104
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1105
        enable_cache_transfer_scope_ = true;
1106
      }
1107
      if (!new_scope) {
Y
yuyang18 已提交
1108 1109
        new_scope = &scope.NewScope();
      }
1110 1111 1112 1113
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1114
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1115 1116 1117
      // time, not the gpu tensor.
      // Thus, we set pre_scope_ = nullptr to trigger `new RuntimeContext()` in
      // RunImpl().
1118
      if (enable_cache_runtime_context_) {
1119 1120
        pre_scope_ = nullptr;
      }
Y
yuyang18 已提交
1121 1122

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1123
      input_vars[i] = trans_var;
1124

Y
yuyang18 已提交
1125
      Tensor out;
Y
yuyang18 已提交
1126
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1127 1128 1129 1130 1131 1132
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  const std::vector<const Variable*> vars = ctx.MultiInputVar(name);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
      }
      if (t != nullptr) {
        PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                          "The Tensor in the %s Op's Input Variable %s(%s) is "
                          "not initialized.",
                          Type(), name, ctx.Inputs(name).at(i));
        proto::VarType::Type tmp = t->type();
        PADDLE_ENFORCE(tmp == *data_type || *data_type == dafault_data_type,
                       "The DataType of %s Op's duplicable Variable %s must be "
                       "consistent. The current variable type is (%s), but the "
                       "previous variable type is (%s).",
                       Type(), name, DataTypeToString(tmp),
                       DataTypeToString(*data_type));
        *data_type = tmp;
      }
    }
  }
}

1169
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1170
    const ExecutionContext& ctx) const {
1171 1172 1173
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
Y
Yu Yang 已提交
1174
  for (auto& input : this->inputs_) {
1175
    ParseInputDataType(ctx, input.first, &data_type);
Y
Yu Yang 已提交
1176
  }
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
  PADDLE_ENFORCE_NE(data_type, dafault_data_type,
                    "DataType should be indicated by input Variable.");
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      "The Input Variable(%s) of %s Op used to determine kernel data type "
      "is empty or not LoDTensor or SelectedRows.",
      name, Type());
1193
  return data_type;
Y
Yu Yang 已提交
1194
}
1195

1196 1197 1198 1199 1200 1201 1202 1203
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1204 1205
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1206 1207
}

Q
Qiao Longfei 已提交
1208
}  // namespace framework
L
liaogang 已提交
1209
}  // namespace paddle