concat_and_split.cc 11.8 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15
#include "paddle/fluid/operators/math/concat_and_split.h"
16

L
Leo Chen 已提交
17
#include "paddle/phi/kernels/funcs/concat_and_split_functor.h"
18
#ifdef PADDLE_WITH_ASCEND_CL
19
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
20
#endif
Z
zn 已提交
21 22 23
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#endif
24 25
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
W
wanghuancoder 已提交
26

27
namespace phi {
28
class DenseTensor;
29
}  // namespace phi
30

W
wanghuancoder 已提交
31
namespace paddle {
32
namespace framework {}  // namespace framework
W
wanghuancoder 已提交
33 34 35 36
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle
C
chengduoZH 已提交
37 38 39 40 41 42

namespace paddle {
namespace operators {
namespace math {

/*
C
chengduoZH 已提交
43
 * All tensors' dimension should be the same and the values of
44
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
45 46 47 48 49
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
50 51
                  const std::vector<framework::Tensor>& input,
                  int axis,
C
chengduoZH 已提交
52
                  framework::Tensor* output) {
L
Leo Chen 已提交
53 54
    phi::funcs::ConcatFunctor<phi::CPUContext, T> functor;
    functor(context, input, axis, output);
C
chengduoZH 已提交
55 56 57
  }
};

C
chengduoZH 已提交
58 59
/*
 * All tensors' dimension should be the same and the values of
60
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
61
 */
C
chengduoZH 已提交
62
template <typename T>
C
chengduo 已提交
63
class SplitFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
64 65
 public:
  void operator()(const platform::CPUDeviceContext& context,
Q
qiaolongfei 已提交
66
                  const framework::Tensor& input,
C
chengduoZH 已提交
67
                  const std::vector<const framework::Tensor*>& ref_inputs,
68 69
                  const int axis,
                  std::vector<framework::Tensor*>* outputs) {
L
Leo Chen 已提交
70 71
    phi::funcs::SplitFunctor<phi::CPUContext, T> functor;
    functor(context, input, ref_inputs, axis, outputs);
C
chengduoZH 已提交
72 73
  }
};
74 75 76 77 78 79 80 81 82 83

#ifdef PADDLE_WITH_XPU
/*
 * All tensors' dimension should be the same and the values of
 * each dimension must be the same, except the axis dimension.
 */
template <typename T>
class ConcatFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
84 85
                  const std::vector<framework::Tensor>& input,
                  int axis,
86
                  framework::Tensor* output) {
87
    int dev_id = context.GetPlace().GetDeviceId();
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    platform::XPUDeviceGuard guard(dev_id);

    int num = input.size();
    auto input_dims = input[0].dims();

    std::vector<std::vector<int>> xdims_list(num);
    for (int i = 0; i < num; ++i) {
      std::vector<int> tmp_dims(input_dims.size());
      for (int j = 0; j < input_dims.size(); ++j) {
        tmp_dims[j] = input[i].dims()[j];
      }
      xdims_list[i] = tmp_dims;
    }

    std::vector<const T*> ptrs;
    for (int i = 0; i < num; ++i) {
      ptrs.push_back(input[i].data<T>());
    }

107 108
    auto r = xpu::concat<T>(
        context.x_context(), ptrs, output->data<T>(), xdims_list, axis);
109
    PADDLE_ENFORCE_EQ(
110 111
        r,
        XPU_SUCCESS,
112 113 114
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
115 116
            r,
            XPUAPIErrorMsg[r]));
117 118 119 120 121 122 123 124 125
  }
};

template <typename T>
class SplitFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
126 127
                  const int axis,
                  std::vector<framework::Tensor*>* outputs) {
128
    int dev_id = context.GetPlace().GetDeviceId();
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    platform::XPUDeviceGuard guard(dev_id);

    auto& ins = ref_inputs;

    int num = ins.size();
    auto input_dims = ins[0]->dims();
    std::vector<int> split_list(num);
    std::vector<int> xdims_list(input_dims.size());
    int total_length = 0;
    for (int i = 0; i < num; ++i) {
      split_list[i] = ins[i]->dims()[axis];
      total_length += ins[i]->dims()[axis];
    }

    for (int i = 0; i < input_dims.size(); ++i) {
      if (i == axis) continue;
      xdims_list[i] = input_dims[i];
    }
    xdims_list[axis] = total_length;

    std::vector<T*> ptrs(num);
    for (int i = 0; i < num; ++i) {
      ptrs[i] = outputs->at(i)->data<T>();
    }

154 155 156 157 158 159
    auto r = xpu::split<T>(context.x_context(),
                           input.data<T>(),
                           ptrs,
                           xdims_list,
                           split_list,
                           axis);
160
    PADDLE_ENFORCE_EQ(
161 162
        r,
        XPU_SUCCESS,
163 164 165
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
166 167
            r,
            XPUAPIErrorMsg[r]));
168 169 170 171
  }
};
#endif

172 173 174 175 176
#ifdef PADDLE_WITH_ASCEND_CL
template <typename T>
class ConcatFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
177 178
                  const std::vector<framework::Tensor>& input,
                  int axis,
179
                  framework::Tensor* output) {
180
    int dev_id = context.GetPlace().GetDeviceId();
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    platform::NPUDeviceGuard guard(dev_id);

    std::vector<std::string> names;
    for (size_t i = 0; i < input.size(); ++i) {
      names.push_back("x" + std::to_string(i));
    }
    NpuOpRunner runner{
        "ConcatD",
        {input},
        {*output},
        {{"concat_dim", axis}, {"N", static_cast<int>(input.size())}}};
    runner.AddInputNames(names);
    runner.Run(context.stream());
  }
};

template <typename T>
class SplitFunctor<platform::NPUDeviceContext, T> {
 public:
  void operator()(const platform::NPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
203 204
                  const int axis,
                  std::vector<framework::Tensor*>* outputs) {
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    if (input.numel() == 0) {
      return;
    }

    size_t num = outputs->size();

    int input_rows = 1;
    auto dim_0 = ref_inputs[0]->dims();
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }

    int input_cols = 0;

    std::vector<int64_t> output_cols(outputs->size());
    for (size_t i = 0; i < num; ++i) {
      int t_cols = ref_inputs[i]->numel() / input_rows;
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
225
    auto npu_place = context.GetPlace();
226 227 228 229 230 231 232 233 234 235

    // computation
    for (int k = 0; k < input_rows; ++k) {
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
      for (size_t j = 0; j < num; ++j) {
        int col_len = output_cols[j];
        auto* out_tensor = outputs->at(j);
        if (out_tensor != nullptr) {
          T* dst_ptr = out_tensor->data<T>() + k * col_len;
236 237 238 239 240 241
          memory::Copy(npu_place,
                       dst_ptr,
                       npu_place,
                       src_ptr + col_idx,
                       sizeof(T) * col_len,
                       context.stream());
242 243 244 245 246 247 248 249
        }
        col_idx += col_len;
      }
    }
  }
};
#endif

Z
zn 已提交
250 251 252 253 254
#ifdef PADDLE_WITH_MLU
template <typename T>
class ConcatFunctor<platform::MLUDeviceContext, T> {
 public:
  void operator()(const platform::MLUDeviceContext& context,
255 256
                  const std::vector<framework::Tensor>& input,
                  int axis,
Z
zn 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                  framework::Tensor* output) {
    int dev_id = context.GetPlace().GetDeviceId();
    platform::MLUDeviceGuard guard(dev_id);

    auto ins_size = input.size();

    const int axis_t = axis;
    const int ins_size_t = ins_size;

    // mlu should do sth
    // init ins tensors
    std::vector<const void*> inputs;
    std::vector<MLUCnnlTensorDesc> input_descs;
    std::vector<cnnlTensorDescriptor_t> desc_vector;
    for (size_t i = 0; i < ins_size; i++) {
      input_descs.emplace_back(MLUCnnlTensorDesc(
          input[i], CNNL_LAYOUT_ARRAY, ToCnnlDataType(input[i].dtype())));
      desc_vector.push_back(input_descs.back().get());
      inputs.push_back(input[i].data());
    }
    // init out tensors
278 279
    MLUCnnlTensorDesc output_desc(
        *output, CNNL_LAYOUT_ARRAY, ToCnnlDataType(output->dtype()));
Z
zn 已提交
280 281

    // MLU should do sth
282 283 284 285 286 287 288
    MLUCnnl::Concat(context,
                    ins_size_t,
                    axis_t,
                    desc_vector.data(),
                    inputs.data(),
                    output_desc.get(),
                    GetBasePtr(output));
Z
zn 已提交
289 290 291 292 293 294 295 296 297
  }
};

template <typename T>
class SplitFunctor<platform::MLUDeviceContext, T> {
 public:
  void operator()(const platform::MLUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
298 299
                  const int axis,
                  std::vector<framework::Tensor*>* outputs) {
Z
zn 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
    if (input.numel() == 0) {
      return;
    }

    int dev_id = context.GetPlace().GetDeviceId();
    platform::MLUDeviceGuard guard(dev_id);

    auto in_dims = input.dims();
    auto out_size = outputs->size();

    std::vector<framework::DDim> outs_dims(out_size, in_dims);
    for (size_t i = 0; i < out_size; ++i) {
      outs_dims[i][axis] = ref_inputs[i]->dims()[axis];
    }

    // init out tensors
    std::vector<void*> vct_tensor;
    std::vector<MLUCnnlTensorDesc> output_descs;
    std::vector<cnnlTensorDescriptor_t> desc_vector;
    for (size_t i = 0; i < out_size; i++) {
      (*outputs)[i]->Resize(outs_dims[i]);
      output_descs.emplace_back(
322 323
          MLUCnnlTensorDesc(*(*outputs)[i],
                            CNNL_LAYOUT_ARRAY,
Z
zn 已提交
324 325 326 327 328
                            ToCnnlDataType((*outputs)[i]->dtype())));
      desc_vector.push_back(output_descs.back().get());
      vct_tensor.push_back(GetBasePtr((*outputs)[i]));
    }
    // init in tensors
329 330
    MLUCnnlTensorDesc input_desc(
        input, CNNL_LAYOUT_ARRAY, ToCnnlDataType(input.dtype()));
Z
zn 已提交
331 332

    // MLU should do sth
333 334 335 336 337 338 339
    MLUCnnl::Split(context,
                   out_size,
                   axis,
                   input_desc.get(),
                   input.data(),
                   desc_vector.data(),
                   vct_tensor.data());
Z
zn 已提交
340 341 342 343
  }
};
#endif

C
chengduoZH 已提交
344 345
#define DEFINE_FUNCTOR(type)                                      \
  template class ConcatFunctor<platform::CPUDeviceContext, type>; \
C
chengduo 已提交
346
  template class SplitFunctor<platform::CPUDeviceContext, type>;
C
chengduoZH 已提交
347

C
chengduoZH 已提交
348
FOR_ALL_TYPES(DEFINE_FUNCTOR);
C
chengduoZH 已提交
349

350 351 352 353 354 355 356 357
#ifdef PADDLE_WITH_XPU
#define DEFINE_XPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::XPUDeviceContext, type>; \
  template class SplitFunctor<platform::XPUDeviceContext, type>;

DEFINE_XPU_FUNCTOR(float)
#endif

358 359 360 361 362 363 364 365
#ifdef PADDLE_WITH_ASCEND_CL
#define DEFINE_NPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::NPUDeviceContext, type>; \
  template class SplitFunctor<platform::NPUDeviceContext, type>;

FOR_ALL_TYPES(DEFINE_NPU_FUNCTOR)
#endif

Z
zn 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378
#ifdef PADDLE_WITH_MLU
#define DEFINE_MLU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::MLUDeviceContext, type>; \
  template class SplitFunctor<platform::MLUDeviceContext, type>;
DEFINE_MLU_FUNCTOR(float)
DEFINE_MLU_FUNCTOR(platform::float16)
DEFINE_MLU_FUNCTOR(int64_t)
DEFINE_MLU_FUNCTOR(bool)
DEFINE_MLU_FUNCTOR(int)
DEFINE_MLU_FUNCTOR(int8_t)
DEFINE_MLU_FUNCTOR(int16_t)
DEFINE_MLU_FUNCTOR(uint8_t)
#endif
C
chengduoZH 已提交
379 380 381
}  // namespace math
}  // namespace operators
}  // namespace paddle