/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/phi/kernels/funcs/concat_and_split_functor.h" #ifdef PADDLE_WITH_ASCEND_CL #include "paddle/fluid/platform/device/npu/npu_op_runner.h" #endif #ifdef PADDLE_WITH_MLU #include "paddle/fluid/operators/mlu/mlu_baseop.h" #endif #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/float16.h" namespace phi { class DenseTensor; } // namespace phi namespace paddle { namespace framework {} // namespace framework namespace platform { class CPUDeviceContext; } // namespace platform } // namespace paddle namespace paddle { namespace operators { namespace math { /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template class ConcatFunctor { public: void operator()(const platform::CPUDeviceContext& context, const std::vector& input, int axis, framework::Tensor* output) { phi::funcs::ConcatFunctor functor; functor(context, input, axis, output); } }; /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template class SplitFunctor { public: void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const std::vector& ref_inputs, const int axis, std::vector* outputs) { phi::funcs::SplitFunctor functor; functor(context, input, ref_inputs, axis, outputs); } }; #ifdef PADDLE_WITH_XPU /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template class ConcatFunctor { public: void operator()(const platform::XPUDeviceContext& context, const std::vector& input, int axis, framework::Tensor* output) { int dev_id = context.GetPlace().GetDeviceId(); platform::XPUDeviceGuard guard(dev_id); int num = input.size(); auto input_dims = input[0].dims(); std::vector> xdims_list(num); for (int i = 0; i < num; ++i) { std::vector tmp_dims(input_dims.size()); for (int j = 0; j < input_dims.size(); ++j) { tmp_dims[j] = input[i].dims()[j]; } xdims_list[i] = tmp_dims; } std::vector ptrs; for (int i = 0; i < num; ++i) { ptrs.push_back(input[i].data()); } auto r = xpu::concat( context.x_context(), ptrs, output->data(), xdims_list, axis); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, platform::errors::External( "XPU API return wrong value[%d %s], please check whether " "Baidu Kunlun Card is properly installed.", r, XPUAPIErrorMsg[r])); } }; template class SplitFunctor { public: void operator()(const platform::XPUDeviceContext& context, const framework::Tensor& input, const std::vector& ref_inputs, const int axis, std::vector* outputs) { int dev_id = context.GetPlace().GetDeviceId(); platform::XPUDeviceGuard guard(dev_id); auto& ins = ref_inputs; int num = ins.size(); auto input_dims = ins[0]->dims(); std::vector split_list(num); std::vector xdims_list(input_dims.size()); int total_length = 0; for (int i = 0; i < num; ++i) { split_list[i] = ins[i]->dims()[axis]; total_length += ins[i]->dims()[axis]; } for (int i = 0; i < input_dims.size(); ++i) { if (i == axis) continue; xdims_list[i] = input_dims[i]; } xdims_list[axis] = total_length; std::vector ptrs(num); for (int i = 0; i < num; ++i) { ptrs[i] = outputs->at(i)->data(); } auto r = xpu::split(context.x_context(), input.data(), ptrs, xdims_list, split_list, axis); PADDLE_ENFORCE_EQ( r, XPU_SUCCESS, platform::errors::External( "XPU API return wrong value[%d %s], please check whether " "Baidu Kunlun Card is properly installed.", r, XPUAPIErrorMsg[r])); } }; #endif #ifdef PADDLE_WITH_ASCEND_CL template class ConcatFunctor { public: void operator()(const platform::NPUDeviceContext& context, const std::vector& input, int axis, framework::Tensor* output) { int dev_id = context.GetPlace().GetDeviceId(); platform::NPUDeviceGuard guard(dev_id); std::vector names; for (size_t i = 0; i < input.size(); ++i) { names.push_back("x" + std::to_string(i)); } NpuOpRunner runner{ "ConcatD", {input}, {*output}, {{"concat_dim", axis}, {"N", static_cast(input.size())}}}; runner.AddInputNames(names); runner.Run(context.stream()); } }; template class SplitFunctor { public: void operator()(const platform::NPUDeviceContext& context, const framework::Tensor& input, const std::vector& ref_inputs, const int axis, std::vector* outputs) { if (input.numel() == 0) { return; } size_t num = outputs->size(); int input_rows = 1; auto dim_0 = ref_inputs[0]->dims(); for (int i = 0; i < axis; ++i) { input_rows *= dim_0[i]; } int input_cols = 0; std::vector output_cols(outputs->size()); for (size_t i = 0; i < num; ++i) { int t_cols = ref_inputs[i]->numel() / input_rows; input_cols += t_cols; output_cols[i] = t_cols; } auto npu_place = context.GetPlace(); // computation for (int k = 0; k < input_rows; ++k) { const T* src_ptr = input.data() + k * input_cols; int col_idx = 0; for (size_t j = 0; j < num; ++j) { int col_len = output_cols[j]; auto* out_tensor = outputs->at(j); if (out_tensor != nullptr) { T* dst_ptr = out_tensor->data() + k * col_len; memory::Copy(npu_place, dst_ptr, npu_place, src_ptr + col_idx, sizeof(T) * col_len, context.stream()); } col_idx += col_len; } } } }; #endif #ifdef PADDLE_WITH_MLU template class ConcatFunctor { public: void operator()(const platform::MLUDeviceContext& context, const std::vector& input, int axis, framework::Tensor* output) { int dev_id = context.GetPlace().GetDeviceId(); platform::MLUDeviceGuard guard(dev_id); auto ins_size = input.size(); const int axis_t = axis; const int ins_size_t = ins_size; // mlu should do sth // init ins tensors std::vector inputs; std::vector input_descs; std::vector desc_vector; for (size_t i = 0; i < ins_size; i++) { input_descs.emplace_back(MLUCnnlTensorDesc( input[i], CNNL_LAYOUT_ARRAY, ToCnnlDataType(input[i].dtype()))); desc_vector.push_back(input_descs.back().get()); inputs.push_back(input[i].data()); } // init out tensors MLUCnnlTensorDesc output_desc( *output, CNNL_LAYOUT_ARRAY, ToCnnlDataType(output->dtype())); // MLU should do sth MLUCnnl::Concat(context, ins_size_t, axis_t, desc_vector.data(), inputs.data(), output_desc.get(), GetBasePtr(output)); } }; template class SplitFunctor { public: void operator()(const platform::MLUDeviceContext& context, const framework::Tensor& input, const std::vector& ref_inputs, const int axis, std::vector* outputs) { if (input.numel() == 0) { return; } int dev_id = context.GetPlace().GetDeviceId(); platform::MLUDeviceGuard guard(dev_id); auto in_dims = input.dims(); auto out_size = outputs->size(); std::vector outs_dims(out_size, in_dims); for (size_t i = 0; i < out_size; ++i) { outs_dims[i][axis] = ref_inputs[i]->dims()[axis]; } // init out tensors std::vector vct_tensor; std::vector output_descs; std::vector desc_vector; for (size_t i = 0; i < out_size; i++) { (*outputs)[i]->Resize(outs_dims[i]); output_descs.emplace_back( MLUCnnlTensorDesc(*(*outputs)[i], CNNL_LAYOUT_ARRAY, ToCnnlDataType((*outputs)[i]->dtype()))); desc_vector.push_back(output_descs.back().get()); vct_tensor.push_back(GetBasePtr((*outputs)[i])); } // init in tensors MLUCnnlTensorDesc input_desc( input, CNNL_LAYOUT_ARRAY, ToCnnlDataType(input.dtype())); // MLU should do sth MLUCnnl::Split(context, out_size, axis, input_desc.get(), input.data(), desc_vector.data(), vct_tensor.data()); } }; #endif #define DEFINE_FUNCTOR(type) \ template class ConcatFunctor; \ template class SplitFunctor; FOR_ALL_TYPES(DEFINE_FUNCTOR); #ifdef PADDLE_WITH_XPU #define DEFINE_XPU_FUNCTOR(type) \ template class ConcatFunctor; \ template class SplitFunctor; DEFINE_XPU_FUNCTOR(float) #endif #ifdef PADDLE_WITH_ASCEND_CL #define DEFINE_NPU_FUNCTOR(type) \ template class ConcatFunctor; \ template class SplitFunctor; FOR_ALL_TYPES(DEFINE_NPU_FUNCTOR) #endif #ifdef PADDLE_WITH_MLU #define DEFINE_MLU_FUNCTOR(type) \ template class ConcatFunctor; \ template class SplitFunctor; DEFINE_MLU_FUNCTOR(float) DEFINE_MLU_FUNCTOR(platform::float16) DEFINE_MLU_FUNCTOR(int64_t) DEFINE_MLU_FUNCTOR(bool) DEFINE_MLU_FUNCTOR(int) DEFINE_MLU_FUNCTOR(int8_t) DEFINE_MLU_FUNCTOR(int16_t) DEFINE_MLU_FUNCTOR(uint8_t) #endif } // namespace math } // namespace operators } // namespace paddle