pybind.cc 12.0 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
26
#include "paddle/pybind/tensor_py.h"
27
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
28 29 30 31
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

32 33
namespace py = pybind11;

34
USE_OP(add);
35
USE_OP(onehot_cross_entropy);
F
fengjiayi 已提交
36
USE_OP(sgd);
Q
qijun 已提交
37
USE_OP(mul);
38
USE_OP(elementwise_mul);
L
liaogang 已提交
39
USE_OP(mean);
Q
qijun 已提交
40 41
USE_OP(sigmoid);
USE_OP(softmax);
42
USE_OP(softmax_with_cross_entropy);
Q
qijun 已提交
43
USE_OP(rowwise_add);
F
fengjiayi 已提交
44
USE_OP(fill_zeros_like);
45
USE_NO_KERNEL_OP(recurrent);
46
USE_OP(gaussian_random);
Y
Yu Yang 已提交
47
USE_OP(uniform_random);
48
USE_OP(lookup_table);
Y
Yu Yang 已提交
49
USE_OP(scale);
50
USE_NO_KERNEL_OP(identity);
Y
Yu Yang 已提交
51
USE_OP(minus);
X
Xinghai Sun 已提交
52
USE_OP(cos_sim);
Z
zchen0211 已提交
53
USE_CPU_ONLY_OP(gather);
Z
zchen0211 已提交
54
USE_CPU_ONLY_OP(scatter);
55
USE_CPU_ONLY_OP(concat);
武毅 已提交
56
USE_OP(top_k);
57
USE_OP(squared_l2_distance);
58
USE_OP(sum);
Y
Yibing Liu 已提交
59
USE_OP(reshape);
60

61 62
namespace paddle {
namespace framework {
D
dongzhihong 已提交
63 64

using Tensor = framework::Tensor;
65 66
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
D
dongzhihong 已提交
67

68 69 70 71 72
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
73 74 75 76 77 78 79 80
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

81
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
82
  py::module m("core", "C++ core of PaddlePaddle");
83

84 85 86
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
87
      .def("get_dims",
88
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
89
      .def("set_dims",
Q
qijun 已提交
90
           [](Tensor &self, const std::vector<int64_t> &dim) {
91
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
92 93
           })
      .def("alloc_float",
Y
Yu Yang 已提交
94
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
95
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
96
           })
Q
qijun 已提交
97
      .def("alloc_float",
Y
Yu Yang 已提交
98
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
99
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
100 101
           })
      .def("alloc_int",
Y
Yu Yang 已提交
102
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
103
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
104
           })
Q
qijun 已提交
105
      .def("alloc_int",
Y
Yu Yang 已提交
106
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
107
             self.mutable_data<int>(place);
Q
qijun 已提交
108
           })
Y
Yu Yang 已提交
109 110
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
111
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
112 113
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
114
#endif
115
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
116
      .def("set_float_element",
117
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
118
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
119 120
             self.data<float>()[offset] = f;
           })
121
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
122
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
123 124
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
125

126
  py::class_<LoDTensor>(m, "LoDTensor", R"DOC(LoD(Leval of Ddetails) Tensor.
D
dangqingqing 已提交
127

128
The tensor and LoD info should be created before creating the LoDTensor, then
D
dangqingqing 已提交
129 130 131
call the set_tensor and set_lod functions to set them.

)DOC")
132 133 134 135 136 137 138 139 140 141 142 143 144
      .def("__init__",
           [](LoDTensor &instance,
              const std::vector<std::vector<size_t>> &lod,
              Tensor *t) {
#ifdef PADDLE_ONLY_CPU
             new (&instance) LoDTensor(lod, t);
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             new (&instance) LoDTensor(new_lod, t);
#endif
           })
D
dangqingqing 已提交
145
      .def("set_tensor",
146
           [](LoDTensor &self, Tensor *tensor) { self.set_tensor(tensor); })
D
dangqingqing 已提交
147
      .def("set_lod",
148
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
149
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
150
             self.set_lod(lod);
151 152 153 154 155 156
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
157
           })
158 159
      .def("tensor",
           [](LoDTensor &self) -> Tensor & { return self.tensor(); },
D
dangqingqing 已提交
160
           py::return_value_policy::reference)
161 162
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
163
        return self.lod();
164 165 166 167 168 169 170 171 172 173 174 175 176 177
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
               [](paddle::framework::Vector<size_t> item) ->
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
178 179
      });

180
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
181 182 183

All parameter, weight, gradient are variables in Paddle.
)DOC")
184
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
185
      .def("set_int",
186 187
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
Y
Yu Yang 已提交
188
      .def("get_tensor",
189
           [](Variable &self) -> Tensor * { return self.GetMutable<Tensor>(); },
Y
Yan Chunwei 已提交
190
           py::return_value_policy::reference)
D
dangqingqing 已提交
191
      .def("get_lod_tensor",
192 193
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
194 195
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
196
      .def("get_net",
D
dongzhihong 已提交
197 198
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
199
           },
Y
Yu Yang 已提交
200
           py::return_value_policy::reference);
201

202
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
203
      .def("new_var",
204
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
205 206
             return self.NewVar(name);
           },
207
           py::return_value_policy::reference)
208
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
209
      .def(py::init<>())
210 211
      .def("new_scope",
           [](Scope &self) -> Scope * { return &self.NewScope(); },
212
           py::return_value_policy::reference)
213
      .def("drop_kids", &Scope::DropKids);
214

Y
Yu Yang 已提交
215 216
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
217 218
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
219 220 221 222

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
223
      std::string str;
Y
Yu Yang 已提交
224
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
225
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
226 227
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
228 229
    return ret_values;
  });
230 231 232
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
233 234
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
235
  // clang-format off
Y
Yu Yang 已提交
236
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
237 238
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
239
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
240 241 242 243 244
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
245
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
246
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
247
#else
Q
qijun 已提交
248
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
249
#endif
Q
qijun 已提交
250
                  });
Q
qijun 已提交
251
  // clang-format on
Q
qijun 已提交
252

253 254 255
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
256

257 258 259
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
260

Y
Yu Yang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
      .def("infer_shape", &OperatorBase::InferShape)
      .def("run", &OperatorBase::Run)
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
286 287
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
288
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
289
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
290 291 292 293
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
294

Y
Yu Yang 已提交
295 296 297 298 299 300 301
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
302 303 304 305
      .def("append_op",
           [](operators::NetOp &self, const OperatorBase &op) {
             self.AppendOp(op);
           })
D
dongzhihong 已提交
306 307 308 309
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
310

Y
Yan Chunwei 已提交
311
  // recurrent_op
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
325 326 327
      .def("set_stepnet",
           [](operators::RecurrentOp &self, const operators::NetOp &net)
               -> void { self.set_stepnet(net.Clone()); });
Y
Yan Chunwei 已提交
328

329 330
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
331 332
  m.def("is_compile_gpu", IsCompileGPU);

333
  return m.ptr();
L
Luo Tao 已提交
334
}
335 336
}  // namespace framework
}  // namespace paddle