conv_compute.cc 4.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include "paddle/fluid/lite/arm/math/conv_direct.h"
T
tensor-tang 已提交
17 18
#include "paddle/fluid/lite/arm/math/conv_depthwise.h"
#include "paddle/fluid/lite/arm/math/conv_gemmlike.h"
T
tensor-tang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void ConvCompute::Run() {
  auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  auto& ctx = this->ctx_->template As<ARMContext>();

  int win = x_dims[3];  // nchw
  int hin = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int ow = o_dims[3];
  int oh = o_dims[2];
  int oc = o_dims[1];
  int kh = w_dims[2];  // oihw
  int kw = w_dims[3];
  int pad = param.paddings[0];
  int stride = param.strides[0];

  const auto* i_data = param.x->data<float>();
  const auto* w_data = param.filter->data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  // TODO(xxx): create should be somewhere better!
  bool kps_equal = (param.paddings[0] == param.paddings[1]) &&
                   (param.strides[0] == param.strides[1]) && (kw == kh);
  bool no_dilation = (param.dilations[0] == 1) && (param.dilations[1] == 1);
  bool flag_dw_3x3 =
      (kw == 3 && (pad == 0 || pad == 1) && (stride == 1 || stride == 2));
  bool flag_dw_5x5 =
      (kw == 5 && stride == 1) || (kw == 5 && stride == 2 && pad == 2);
  bool flag_dw = flag_dw_3x3 || flag_dw_5x5;

  // select conv impl
  // TODO(xxx): enable more
  if (param.groups == ic && ic == oc && kps_equal && no_dilation && flag_dw) {
    // dw conv impl
T
tensor-tang 已提交
67 68
    impl_ = new lite::arm::math::DepthwiseConv<PRECISION(kFloat)>;
    LOG(INFO) << "invoking dw conv";
T
tensor-tang 已提交
69 70 71 72 73
  } else if (param.groups == 1 && kw == 3 && stride == 1 && kps_equal &&
             no_dilation) {
    if (ic >= 32 && oc >= 32 && oh > 16 && ow > 16) {
      // winograd conv impl
      // impl_ = new lite::arm::math::WinogradConv<PRECISION(kFloat)>;
T
tensor-tang 已提交
74
      LOG(FATAL) << "TODO!!! winograd conv";
T
tensor-tang 已提交
75 76 77
    } else {
      // direct conv impl
      impl_ = new lite::arm::math::DirectConv<PRECISION(kFloat)>;
T
tensor-tang 已提交
78
      LOG(INFO) << "invoking direct conv";
T
tensor-tang 已提交
79 80 81 82 83 84
    }
  } else if (param.groups == 1 && kw == 3 && stride == 2 && kps_equal &&
             no_dilation) {
    // direct conv impl
    impl_ = new lite::arm::math::DirectConv<PRECISION(kFloat)>;
  } else {
T
tensor-tang 已提交
85 86
    impl_ = new lite::arm::math::GemmLikeConv<PRECISION(kFloat)>;
    LOG(INFO) << "invoking gemm like conv";
T
tensor-tang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  }
  this->impl_->create(param, &ctx);

  CHECK(impl_);
  impl_->run(param);

  // if (this->act_ != nullptr) {
  //   this->act_->run(outputs, outputs, param.activation_param);
  // }
}

TargetType ConvCompute::target() const { return TARGET(kARM); }

PrecisionType ConvCompute::precision() const { return PRECISION(kFloat); }

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
107 108 109 110 111 112 113 114 115
REGISTER_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW,
                     paddle::lite::kernels::arm::ConvCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW,
T
tensor-tang 已提交
116 117 118 119 120 121
                     paddle::lite::kernels::arm::ConvCompute, def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();