expand_op.h 8.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
yangyaming 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
yangyaming 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
yangyaming 已提交
14 15 16

#pragma once

17 18
#include <vector>

Y
yangyaming 已提交
19 20 21 22 23 24
#include <boost/preprocessor/arithmetic/div.hpp>
#include <boost/preprocessor/arithmetic/mod.hpp>
#include <boost/preprocessor/comparison/greater.hpp>
#include <boost/preprocessor/comparison/greater_equal.hpp>
#include <boost/preprocessor/control/if.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
yangyaming 已提交
28

29 30
#define MAX_RANK_SUPPORTED 6

Y
yangyaming 已提交
31 32 33 34 35 36
#define EXPAND_TEMPLATE(z, n, data) \
  case n + 1: {                     \
    Expand<n + 1>(context);         \
    break;                          \
  }
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
W
wangchaochaohu 已提交
37
#define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
Y
yangyaming 已提交
38 39 40 41 42
#define EXPAND_GRAD_CASE(n)                                        \
  case n: {                                                        \
    ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
    break;                                                         \
  }
Y
yangyaming 已提交
43
#define EXPAND_GRAD_TEMPLATE(z, n, data) \
Y
yangyaming 已提交
44
  BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), )
Y
yangyaming 已提交
45
#define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~)
Y
yangyaming 已提交
46 47 48

namespace paddle {
namespace operators {
49 50
inline std::vector<int> get_expand_times(
    const framework::ExecutionContext& ctx) {
L
liym27 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
  if (ctx.HasInput("ExpandTimes")) {
    auto* expand_tensor = ctx.Input<framework::LoDTensor>("ExpandTimes");
    auto* expand_data = expand_tensor->data<int>();
    framework::Tensor cpu_expand_tensor;
    if (platform::is_gpu_place(expand_tensor->place())) {
      TensorCopySync(*expand_tensor, platform::CPUPlace(), &cpu_expand_tensor);
      expand_data = cpu_expand_tensor.data<int>();
    }
    auto vec_epxand_times =
        std::vector<int>(expand_data, expand_data + expand_tensor->numel());
    return vec_epxand_times;
  }

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  auto list_expand_times_tensor =
      ctx.MultiInput<framework::Tensor>("expand_times_tensor");
  if (list_expand_times_tensor.size() > 0) {
    // get tensor from
    std::vector<int> vec_epxand_times;
    for (size_t i = 0; i < list_expand_times_tensor.size(); ++i) {
      auto tensor = list_expand_times_tensor[i];
      if (platform::is_gpu_place(tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*tensor, platform::CPUPlace(), &temp);
        vec_epxand_times.push_back(*temp.data<int32_t>());
      } else {
        vec_epxand_times.push_back(*tensor->data<int32_t>());
      }
    }

    return vec_epxand_times;
  } else {
    return ctx.Attr<std::vector<int>>("expand_times");
  }
}
Y
yangyaming 已提交
85

Y
yangyaming 已提交
86
using Tensor = framework::Tensor;
Y
yangyaming 已提交
87 88 89 90 91 92
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
93
using framework::To32BitIndex;
Y
yangyaming 已提交
94

Q
QI JUN 已提交
95
template <typename DeviceContext, typename T>
Y
yangyaming 已提交
96
class ExpandKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
97 98
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
99
    auto rank = context.Input<Tensor>("X")->dims().size();
Y
yangyaming 已提交
100
    switch (rank) {
101
      REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED)
Y
yangyaming 已提交
102
      default:
Y
yangyaming 已提交
103 104
        PADDLE_ENFORCE(false,
                       "Only support tensor with rank being between 1 and 6.");
Y
yangyaming 已提交
105
    }
Y
yangyaming 已提交
106 107 108 109 110
  }

 protected:
  template <int Rank>
  void Expand(const framework::ExecutionContext& context) const {
Y
yangyaming 已提交
111
    auto* in0 = context.Input<Tensor>("X");
112 113 114

    auto in_dims = in0->dims();
    auto expand_times = get_expand_times(context);
L
liym27 已提交
115 116 117
    PADDLE_ENFORCE_EQ(static_cast<size_t>(in_dims.size()), expand_times.size(),
                      "The number of Attr(expand_times)'s value must be equal "
                      "to the rank of Input(X).");
Y
yangyaming 已提交
118
    auto* out0 = context.Output<Tensor>("Out");
Y
yangyaming 已提交
119 120 121 122
    Eigen::DSizes<int, Rank> bcast_dims;
    for (size_t i = 0; i < expand_times.size(); ++i) {
      bcast_dims[i] = expand_times[i];
    }
123 124 125 126 127 128 129

    framework::DDim out_dims(in_dims);
    for (size_t i = 0; i < expand_times.size(); ++i) {
      out_dims[i] *= expand_times[i];
    }

    out0->Resize(out_dims);
Y
yangyaming 已提交
130 131 132
    auto x = EigenTensor<T, Rank>::From(*in0);
    out0->mutable_data<T>(context.GetPlace());
    auto y = EigenTensor<T, Rank>::From(*out0);
Q
QI JUN 已提交
133 134
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
135 136 137 138 139 140 141
    // use 32-bit index to speed up
    bool use_32bit_index = y.size() < Eigen::NumTraits<int>::highest();
    if (use_32bit_index) {
      To32BitIndex(y).device(place) = To32BitIndex(x).broadcast(bcast_dims);
    } else {
      y.device(place) = x.broadcast(bcast_dims);
    }
Y
yangyaming 已提交
142 143 144
  }
};

Q
QI JUN 已提交
145
template <typename DeviceContext, typename T>
Y
yangyaming 已提交
146
class ExpandGradKernel : public framework::OpKernel<T> {
Y
yangyaming 已提交
147 148
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
yangyaming 已提交
149
    auto* in0 = context.Input<Tensor>("X");
150 151
    // auto& expand_times = context.Attr<std::vector<int>>("expand_times");
    auto expand_times = get_expand_times(context);
Y
yangyaming 已提交
152
    auto x_dims = in0->dims();
W
wangchaochaohu 已提交
153
    // 1. reshape_dims_vec is the broadcast parameter.
154 155 156
    // 2. reduce_dims_vec is the dimension parameter to compute gradients. For
    //    each dimension expanded, the gradients should be summed to original
    //    size.
Y
yangyaming 已提交
157 158 159
    std::vector<int> reshape_dims_vec;
    std::vector<int> reduce_dims_vec;
    for (size_t i = 0; i < expand_times.size(); ++i) {
W
wangchaochaohu 已提交
160 161 162
      reduce_dims_vec.push_back(reshape_dims_vec.size());
      reshape_dims_vec.push_back(expand_times[i]);
      reshape_dims_vec.push_back(x_dims[i]);
Y
yangyaming 已提交
163 164
    }

W
wangchaochaohu 已提交
165 166 167 168 169 170 171 172 173
    int dims = reduce_dims_vec.size();

    bool just_copy = true;
    for (size_t i = 0; i < expand_times.size(); i++) {
      if (expand_times[i] != 1) {
        just_copy = false;
        break;
      }
    }
Y
yangyaming 已提交
174
    // no need reduce, just copy
W
wangchaochaohu 已提交
175
    if (just_copy) {
Y
yangyaming 已提交
176 177
      auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
      auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
Y
yangyaming 已提交
178
      out0->mutable_data<T>(context.GetPlace());
Y
Yi Wang 已提交
179 180
      framework::TensorCopy(*in0, context.GetPlace(), context.device_context(),
                            out0);
Y
yangyaming 已提交
181 182
    } else {
      switch (dims) {
W
wangchaochaohu 已提交
183
        REP_EXPAND_GRAD_TEMPLATE(MAX_RANK_SUPPORTED)
Y
yangyaming 已提交
184
        default:
Y
yangyaming 已提交
185 186
          PADDLE_ENFORCE(
              false, "Only support tensor with rank being between 1 and 6.");
Y
yangyaming 已提交
187
      }
Y
yangyaming 已提交
188
    }
Y
yangyaming 已提交
189 190 191 192 193 194 195
  }

 protected:
  template <int Dims>
  void ExpandBackward(const framework::ExecutionContext& context,
                      const std::vector<int>& reshape_dims_vec,
                      const std::vector<int>& reduce_dims_vec) const {
W
wangchaochaohu 已提交
196 197
    size_t reshape_size = reshape_dims_vec.size();
    size_t reduce_size = reduce_dims_vec.size();
Y
yangyaming 已提交
198
    PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
Y
yangyaming 已提交
199
                      "Inconsistent size between template Dims and "
Y
yangyaming 已提交
200 201
                      "reshape dimensions.");
    PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(),
Y
yangyaming 已提交
202
                      "Inconsistent size between template Dims and "
Y
yangyaming 已提交
203
                      "reduce dimensions.");
Y
yangyaming 已提交
204 205
    auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
Y
yangyaming 已提交
206 207
    out0->mutable_data<T>(context.GetPlace());
    auto x_grad = EigenVector<T>::Flatten(*out0);
W
wangchaochaohu 已提交
208
    Eigen::DSizes<int, Dims * 2> reshape_dims;
Y
yangyaming 已提交
209 210 211
    for (size_t i = 0; i < reshape_size; ++i) {
      reshape_dims[i] = reshape_dims_vec[i];
    }
W
wangchaochaohu 已提交
212
    Eigen::DSizes<int, Dims> reduce_dims;
Y
yangyaming 已提交
213 214 215 216
    for (size_t i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = reduce_dims_vec[i];
    }
    auto out_grad = EigenVector<T>::Flatten(*in0);
Q
QI JUN 已提交
217 218
    x_grad.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
219 220 221
        out_grad.reshape(reshape_dims)
            .sum(reduce_dims)
            .reshape(x_grad.dimensions());
Y
yangyaming 已提交
222 223 224
  }
};

Y
yangyaming 已提交
225 226
}  // namespace operators
}  // namespace paddle