activation_grad_kernel.h 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
YuanRisheng 已提交
17
#include "paddle/phi/common/scalar.h"
18 19 20 21 22
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/unary.h"

namespace phi {

Y
YuanRisheng 已提交
23
#define DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(name) \
24 25 26 27 28 29
  template <typename T, typename Context>         \
  void name##GradKernel(const Context& dev_ctx,   \
                        const DenseTensor& x,     \
                        const DenseTensor& dout,  \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
30
#define DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(name, attr) \
Y
YuanRisheng 已提交
31 32 33 34 35 36 37
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& x,                   \
                        const DenseTensor& dout,                \
                        float attr,                             \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
38
#define DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(name, attr1, attr2) \
Y
YuanRisheng 已提交
39 40 41 42 43 44 45 46
  template <typename T, typename Context>                               \
  void name##GradKernel(const Context& dev_ctx,                         \
                        const DenseTensor& x,                           \
                        const DenseTensor& dout,                        \
                        float attr1,                                    \
                        float attr2,                                    \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
47
#define DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(name) \
48 49 50 51 52 53
  template <typename T, typename Context>           \
  void name##GradKernel(const Context& dev_ctx,     \
                        const DenseTensor& out,     \
                        const DenseTensor& dout,    \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
54 55 56 57 58
#define DECLARE_ACTIVATION_GRAD_KERNEL_NODEP(name) \
  template <typename T, typename Context>          \
  void name##GradKernel(                           \
      const Context& dev_ctx, const DenseTensor& dout, DenseTensor* dx);

Y
YuanRisheng 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT(name, attr) \
  template <typename T, typename Context>                         \
  void name##GradKernel(const Context& dev_ctx,                   \
                        const DenseTensor& out,                   \
                        const DenseTensor& dout,                  \
                        float attr,                               \
                        DenseTensor* dx);

#define DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(name, attr1, attr2) \
  template <typename T, typename Context>                                 \
  void name##GradKernel(const Context& dev_ctx,                           \
                        const DenseTensor& out,                           \
                        const DenseTensor& dout,                          \
                        float attr1,                                      \
                        float attr2,                                      \
Y
YuanRisheng 已提交
74 75
                        DenseTensor* dx);

76 77 78 79 80 81
template <typename T, typename Context>
void ReluDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& ddx,
                          DenseTensor* ddout);

82 83 84 85
template <typename T, typename Context>
void TanhDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dout,
86
                          const DenseTensor& ddx,
87 88 89 90 91 92 93
                          DenseTensor* dout_new,
                          DenseTensor* ddout);

template <typename T, typename Context>
void TanhTripleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& dout,
94
                          const DenseTensor& ddx,
95
                          const DenseTensor& d_dout_new,
96
                          const DenseTensor& d_ddout,
97 98 99 100 101 102 103 104 105 106 107 108
                          DenseTensor* d_out_new,
                          DenseTensor* d_dout,
                          DenseTensor* d_ddx);

template <typename T, typename Context>
void LeakyReluDoubleGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& ddx,
                               float alpha,
                               DenseTensor* ddout);

template <typename T, typename Context>
Y
YuanRisheng 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
void EluGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& out,
                   const DenseTensor& dout,
                   float alpha,
                   DenseTensor* dx);

template <typename T, typename Context>
void EluDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         float alpha,
                         DenseTensor* dx,
                         DenseTensor* ddout);
124

Y
YuanRisheng 已提交
125 126 127 128
template <typename T, typename Context>
void SigmoidDoubleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& dout,
129
                             const DenseTensor& ddx,
Y
YuanRisheng 已提交
130 131 132 133 134 135 136
                             DenseTensor* dout_new,
                             DenseTensor* ddout);

template <typename T, typename Context>
void SigmoidTripleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& dout,
137
                             const DenseTensor& ddx,
Y
YuanRisheng 已提交
138
                             const DenseTensor& d_dout_new,
139
                             const DenseTensor& d_ddout,
Y
YuanRisheng 已提交
140 141 142 143
                             DenseTensor* d_out_new,
                             DenseTensor* d_dout,
                             DenseTensor* d_ddx);

144 145 146 147 148 149 150 151
template <typename T, typename Context>
void LogDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         DenseTensor* dx,
                         DenseTensor* ddout);

Y
YuanRisheng 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
template <typename T, typename Context>
void HardSwishGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         float threshold,
                         float scale,
                         float offset,
                         DenseTensor* dx);

template <typename T, typename Context>
void PowGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& dout,
                   const Scalar& factor,
                   DenseTensor* dx);

Y
YuanRisheng 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Cos);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Tan);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Acos);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Sin);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Asin);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Atan);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Sinh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Cosh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Asinh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Acosh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Atanh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(TanhShrink);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Silu);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(LogSigmoid);
182 183 184 185
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Log);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Log2);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Log10);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Log1p);
Y
YuanRisheng 已提交
186 187 188 189

DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid);
190
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Sqrt);
Y
YuanRisheng 已提交
191

Y
YuanRisheng 已提交
192 193 194 195
DECLARE_ACTIVATION_GRAD_KERNEL_NODEP(Round);
DECLARE_ACTIVATION_GRAD_KERNEL_NODEP(Floor);
DECLARE_ACTIVATION_GRAD_KERNEL_NODEP(Ceil);

Y
YuanRisheng 已提交
196 197 198 199
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu, alpha);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(ThresholdedRelu, threshold);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(SoftShrink, lambda);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(HardShrink, threshold);
Y
YuanRisheng 已提交
200
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Swish, beta);
201
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(Logit, eps);
Y
YuanRisheng 已提交
202 203 204 205

DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(BRelu, t_min, t_max);

DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(HardSigmoid, slope, offset);
Y
YuanRisheng 已提交
206

207
}  // namespace phi