activation_grad_kernel.h 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/unary.h"

namespace phi {

Y
YuanRisheng 已提交
22
#define DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(name) \
23 24 25 26 27 28
  template <typename T, typename Context>         \
  void name##GradKernel(const Context& dev_ctx,   \
                        const DenseTensor& x,     \
                        const DenseTensor& dout,  \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
29
#define DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(name, attr) \
Y
YuanRisheng 已提交
30 31 32 33 34 35 36
  template <typename T, typename Context>                       \
  void name##GradKernel(const Context& dev_ctx,                 \
                        const DenseTensor& x,                   \
                        const DenseTensor& dout,                \
                        float attr,                             \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
37
#define DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(name, attr1, attr2) \
Y
YuanRisheng 已提交
38 39 40 41 42 43 44 45
  template <typename T, typename Context>                               \
  void name##GradKernel(const Context& dev_ctx,                         \
                        const DenseTensor& x,                           \
                        const DenseTensor& dout,                        \
                        float attr1,                                    \
                        float attr2,                                    \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
46
#define DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(name) \
47 48 49 50 51 52
  template <typename T, typename Context>           \
  void name##GradKernel(const Context& dev_ctx,     \
                        const DenseTensor& out,     \
                        const DenseTensor& dout,    \
                        DenseTensor* dx);

Y
YuanRisheng 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
#define DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPOUT(name, attr) \
  template <typename T, typename Context>                         \
  void name##GradKernel(const Context& dev_ctx,                   \
                        const DenseTensor& out,                   \
                        const DenseTensor& dout,                  \
                        float attr,                               \
                        DenseTensor* dx);

#define DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(name, attr1, attr2) \
  template <typename T, typename Context>                                 \
  void name##GradKernel(const Context& dev_ctx,                           \
                        const DenseTensor& out,                           \
                        const DenseTensor& dout,                          \
                        float attr1,                                      \
                        float attr2,                                      \
Y
YuanRisheng 已提交
68 69
                        DenseTensor* dx);

70 71 72 73 74 75
template <typename T, typename Context>
void ReluDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& ddx,
                          DenseTensor* ddout);

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
template <typename T, typename Context>
void TanhDoubleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& ddx,
                          const DenseTensor& dout,
                          DenseTensor* dout_new,
                          DenseTensor* ddout);

template <typename T, typename Context>
void TanhTripleGradKernel(const Context& dev_ctx,
                          const DenseTensor& out,
                          const DenseTensor& ddx,
                          const DenseTensor& dout,
                          const DenseTensor& d_ddout,
                          const DenseTensor& d_dout_new,
                          DenseTensor* d_out_new,
                          DenseTensor* d_dout,
                          DenseTensor* d_ddx);

template <typename T, typename Context>
void LeakyReluDoubleGradKernel(const Context& dev_ctx,
                               const DenseTensor& x,
                               const DenseTensor& ddx,
                               float alpha,
                               DenseTensor* ddout);

template <typename T, typename Context>
Y
YuanRisheng 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
void EluGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& out,
                   const DenseTensor& dout,
                   float alpha,
                   DenseTensor* dx);

template <typename T, typename Context>
void EluDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& dout,
                         const DenseTensor& ddx,
                         float alpha,
                         DenseTensor* dx,
                         DenseTensor* ddout);
118

Y
YuanRisheng 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
template <typename T, typename Context>
void SigmoidDoubleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& ddx,
                             const DenseTensor& dout,
                             DenseTensor* dout_new,
                             DenseTensor* ddout);

template <typename T, typename Context>
void SigmoidTripleGradKernel(const Context& dev_ctx,
                             const DenseTensor& out,
                             const DenseTensor& ddx,
                             const DenseTensor& dout,
                             const DenseTensor& d_ddout,
                             const DenseTensor& d_dout_new,
                             DenseTensor* d_out_new,
                             DenseTensor* d_dout,
                             DenseTensor* d_ddx);

DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Cos);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Tan);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Acos);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Sin);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Asin);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Atan);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Sinh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Cosh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Asinh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Acosh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Atanh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(TanhShrink);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(Silu);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPX(LogSigmoid);

DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Relu);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Tanh);
DECLARE_ACTIVATION_GRAD_KERNEL_DEPOUT(Sigmoid);

DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(LeakyRelu, alpha);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(ThresholdedRelu, threshold);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(SoftShrink, lambda);
DECLARE_ACT_GRAD_KERNEL_WITH_ONE_ATTRS_DEPX(HardShrink, threshold);

DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPX(BRelu, t_min, t_max);

DECLARE_ACT_GRAD_KERNEL_WITH_TWO_ATTRS_DEPOUT(HardSigmoid, slope, offset);
Y
YuanRisheng 已提交
165

166
}  // namespace phi