softmax_impl.h 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <vector>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/jit/kernels.h"
20 21
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
34
    const T kThreshold = static_cast<T>(-64.);
35 36 37 38
    return x < kThreshold ? kThreshold : x;
  }
};

39 40 41 42 43 44
template <typename DeviceContext, typename T, bool is_test>
void SoftmaxEigen(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
  constexpr int kBatchDim = 0;
  constexpr int kClassDim = 1;

45 46 47 48 49
  auto logits = EigenMatrix<T>::From(*X);
  auto softmax = EigenMatrix<T>::From(*Y);

  const int batch_size = logits.dimension(kBatchDim);
  const int num_classes = logits.dimension(kClassDim);
50
  const int num_remain = num_classes / axis_dim;
51 52 53 54

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
55 56
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);
57 58 59 60 61 62 63 64

  auto shifted_logits = (logits -
                         logits.maximum(along_class)
                             .eval()
                             .reshape(batch_by_one)
                             .broadcast(one_by_class))
                            .unaryExpr(ValueClip<T>());

Q
QI JUN 已提交
65 66
  softmax.device(*context.eigen_device()) = shifted_logits.exp();
  softmax.device(*context.eigen_device()) = (softmax *
67 68
                                             softmax.reshape(batch_axis_remain)
                                                 .sum(along_class)
Q
QI JUN 已提交
69 70
                                                 .inverse()
                                                 .eval()
71
                                                 .broadcast(one_axis));
72 73
}

74 75 76 77 78 79 80
template <typename DeviceContext, typename T, bool is_test, typename Enable>
void SoftmaxFunctor<DeviceContext, T, is_test, Enable>::operator()(
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* X, framework::Tensor* Y) {
  SoftmaxEigen<DeviceContext, T, is_test>(context, axis_dim, X, Y);
}

81 82 83 84
template <class DeviceContext>
using enable_if_CPU = typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type;

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
template <typename DeviceContext, typename T, bool is_test>
class SoftmaxFunctor<DeviceContext, T, is_test, enable_if_CPU<DeviceContext>> {
 public:
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
    auto in_dims = X->dims();
    constexpr int kBatchDim = 0;
    constexpr int kClassDim = 1;

    const int num_classes = in_dims[kClassDim];
    const int batch_size = in_dims[kBatchDim];
    const int num_remain = num_classes / axis_dim;

    if (num_remain == 1 && platform::MayIUse(platform::avx)) {
      const T* in_data = X->data<T>();
      T* out_data = Y->data<T>();
      for (int bs = 0; bs < batch_size; ++bs) {
        T max_val = *std::max_element(in_data, in_data + num_classes);
        max_val *= static_cast<T>(-1);
        vec_add_bias<T, platform::avx>(num_classes, max_val, in_data, out_data);
        vec_clip<T, platform::avx>(num_classes, static_cast<T>(-64), out_data,
                                   out_data);
        vec_exp<T>(num_classes, out_data, out_data);

        T sum = 0;
        vec_sum<T, platform::avx>(num_classes, out_data, &sum);
        sum = static_cast<T>(1) / sum;
        vec_scal<T, platform::avx>(num_classes, sum, out_data, out_data);

        in_data += num_classes;
        out_data += num_classes;
      }
    } else {
      SoftmaxEigen<DeviceContext, T, is_test>(context, axis_dim, X, Y);
    }
  }
};

123
template <typename DeviceContext>
124
class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
125
 public:
126 127
  void operator()(const DeviceContext& context, const int axis_dim,
                  const framework::Tensor* X, framework::Tensor* Y) {
128 129 130
    auto in_dims = X->dims();
    const float* in_data = X->data<float>();
    float* out_data = Y->data<float>();
131 132
    const int kBatchDim = 0;
    const int kClassDim = 1;
133
    // 2D data. Batch x C
T
tensor-tang 已提交
134
    auto compute_softmax =
135
        jit::KernelFuncs<jit::SoftmaxTuple<float>, platform::CPUPlace>::Cache()
T
tensor-tang 已提交
136
            .At(in_dims[kClassDim]);
137 138
    compute_softmax(in_data, out_data, in_dims[kClassDim], in_dims[kBatchDim],
                    in_dims[kClassDim] / axis_dim);
139 140 141 142
  }
};

template <typename DeviceContext, typename T>
Q
QI JUN 已提交
143
void SoftmaxGradFunctor<DeviceContext, T>::operator()(
D
dengkaipeng 已提交
144 145 146
    const DeviceContext& context, const int axis_dim,
    const framework::Tensor* y, const framework::Tensor* y_grad,
    framework::Tensor* x_grad) {
147 148 149 150 151 152 153 154 155
  auto softmax = EigenMatrix<T>::From(*y);
  auto softmax_grad = EigenMatrix<T>::From(*y_grad);
  auto logits_grad = EigenMatrix<T>::From(*x_grad);

  const int kBatchDim = 0;
  const int kClassDim = 1;

  const int batch_size = softmax.dimension(kBatchDim);
  const int num_classes = softmax.dimension(kClassDim);
156
  const int num_remain = num_classes / axis_dim;
157 158 159 160

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);
161 162
  Eigen::DSizes<int, 3> batch_axis_remain(batch_size, axis_dim, num_remain);
  Eigen::DSizes<int, 2> one_axis(1, axis_dim);
163 164

  auto dot = (softmax * softmax_grad)
165
                 .reshape(batch_axis_remain)
166 167
                 .sum(along_class)
                 .eval()
168
                 .broadcast(one_axis);
Q
QI JUN 已提交
169
  logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax;
170 171 172 173 174
}

}  // namespace math
}  // namespace operators
}  // namespace paddle