softmax_impl.h 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
18 19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {
namespace math {

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T>
struct ValueClip {
  HOSTDEVICE T operator()(const T& x) const {
30
    const T kThreshold = static_cast<T>(-64.);
31 32 33 34
    return x < kThreshold ? kThreshold : x;
  }
};

35 36 37 38
template <typename DeviceContext, typename T, bool is_test>
void SoftmaxFunctor<DeviceContext, T, is_test>::operator()(
    const DeviceContext& context, const framework::Tensor* X,
    framework::Tensor* Y) {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  auto logits = EigenMatrix<T>::From(*X);
  auto softmax = EigenMatrix<T>::From(*Y);

  const int kBatchDim = 0;
  const int kClassDim = 1;

  const int batch_size = logits.dimension(kBatchDim);
  const int num_classes = logits.dimension(kClassDim);

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);

  auto shifted_logits = (logits -
                         logits.maximum(along_class)
                             .eval()
                             .reshape(batch_by_one)
                             .broadcast(one_by_class))
                            .unaryExpr(ValueClip<T>());

Q
QI JUN 已提交
59 60 61 62 63 64 65
  softmax.device(*context.eigen_device()) = shifted_logits.exp();
  softmax.device(*context.eigen_device()) = (softmax *
                                             softmax.sum(along_class)
                                                 .inverse()
                                                 .eval()
                                                 .reshape(batch_by_one)
                                                 .broadcast(one_by_class));
66 67
}

68
template <typename DeviceContext, typename T>
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
class SoftmaxFunctor<DeviceContext, T, true> {
  void operator()(const DeviceContext& context, const framework::Tensor* X,
                  framework::Tensor* Y) {
    auto logits = EigenMatrix<T>::From(*X);
    auto softmax = EigenMatrix<T>::From(*Y);

    const int kBatchDim = 0;
    const int kClassDim = 1;

    const int batch_size = logits.dimension(kBatchDim);
    const int num_classes = logits.dimension(kClassDim);

    Eigen::DSizes<int, 1> along_class(kClassDim);
    Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
    Eigen::DSizes<int, 2> one_by_class(1, num_classes);

    auto shifted_logits = (logits -
                           logits.maximum(along_class)
                               .eval()
                               .reshape(batch_by_one)
                               .broadcast(one_by_class));

    softmax.device(*context.eigen_device()) = shifted_logits.exp();
    softmax.device(*context.eigen_device()) = (softmax *
                                               softmax.sum(along_class)
                                                   .inverse()
                                                   .eval()
                                                   .reshape(batch_by_one)
                                                   .broadcast(one_by_class));
  }
};

template <typename DeviceContext, typename T>
Q
QI JUN 已提交
102 103
void SoftmaxGradFunctor<DeviceContext, T>::operator()(
    const DeviceContext& context, const framework::Tensor* y,
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    const framework::Tensor* y_grad, framework::Tensor* x_grad) {
  auto softmax = EigenMatrix<T>::From(*y);
  auto softmax_grad = EigenMatrix<T>::From(*y_grad);
  auto logits_grad = EigenMatrix<T>::From(*x_grad);

  const int kBatchDim = 0;
  const int kClassDim = 1;

  const int batch_size = softmax.dimension(kBatchDim);
  const int num_classes = softmax.dimension(kClassDim);

  Eigen::DSizes<int, 1> along_class(kClassDim);
  Eigen::DSizes<int, 2> batch_by_one(batch_size, 1);
  Eigen::DSizes<int, 2> one_by_class(1, num_classes);

  auto dot = (softmax * softmax_grad)
                 .sum(along_class)
                 .eval()
                 .reshape(batch_by_one)
                 .broadcast(one_by_class);
Q
QI JUN 已提交
124
  logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax;
125 126 127 128 129
}

}  // namespace math
}  // namespace operators
}  // namespace paddle