layer_norm_op.cc 11.4 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/layer_norm_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenMatrixMapRowMajor = Eigen::Map<
    Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
template <typename T>
using ConstEigenMatrixMapRowMajor = Eigen::Map<
    const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");

C
chengduoZH 已提交
41 42 43 44 45 46 47
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
    PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(),
                      "'begin_norm_axis' must be less than the rank of X");

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
48

C
chengduoZH 已提交
49 50 51 52 53
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], left);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], left);

C
chengduoZH 已提交
54
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
55 56
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
57 58 59 60 61 62 63 64 65 66 67

    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LayerNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor");
    AddInput("Scale",
C
chengduoZH 已提交
68
             "Scale is a 1-dimensional tensor of size H "
C
chengduoZH 已提交
69 70
             "that is applied to the output");
    AddInput("Bias",
C
chengduoZH 已提交
71
             "Bias is a 1-dimensional tensor of size H "
C
chengduoZH 已提交
72 73 74 75 76 77 78 79 80 81 82
             "that is applied to the output");
    AddOutput("Y", "result after normalization");
    AddOutput("Mean", "Mean of the current mini batch.");
    AddOutput("Variance", "Variance of the current mini batch.");

    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
C
chengduoZH 已提交
83 84 85 86 87 88 89 90
    AddAttr<int>("begin_norm_axis",
                 "(int default:1), the "
                 "axis of `begin_norm_axis ... Rank(X) - 1` will be normalized")
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
                            "'begin_norm_axis' should be greater than zero.");
        });
C
chengduoZH 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    AddComment(R"DOC(
Layer Normalization.

Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
)DOC");
  }
};

template <typename T>
class LayerNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
chengduoZH 已提交
112
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
C
chengduoZH 已提交
113 114 115 116 117 118 119 120

    auto *output = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    output->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

C
chengduoZH 已提交
121 122 123
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
124

C
chengduoZH 已提交
125
    auto input_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
C
chengduoZH 已提交
126 127
    auto scale_map = ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), left, 1);
    auto bias_map = ConstEigenMatrixMapRowMajor<T>(bias->data<T>(), left, 1);
C
chengduoZH 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
    auto mean_map = EigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = EigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);
    auto output_map = EigenMatrixMapRowMajor<T>(output->data<T>(), left, right);

    auto squre = [](T ele) { return ele * ele; };
    auto add_epslion = [epsilon](T ele) { return ele + epsilon; };

    mean_map = input_map.rowwise().mean();
    var_map = (input_map - mean_map.replicate(1, right))
                  .unaryExpr(squre)
                  .rowwise()
                  .mean()
                  .unaryExpr(add_epslion);

C
chengduoZH 已提交
142 143
    auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };

C
chengduoZH 已提交
144 145
    // TODO(zcd): Some thinking about output_map, is it appropriate that
    // `output_map` and `input_map` point to the same memory.
C
chengduoZH 已提交
146 147 148 149 150
    auto inv_std_scale =
        var_map.unaryExpr(inv_std_func).cwiseProduct(scale_map);
    output_map =
        inv_std_scale.replicate(1, right).cwiseProduct(input_map) +
        (bias_map - inv_std_scale.cwiseProduct(mean_map)).replicate(1, right);
C
chengduoZH 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
168
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
169 170
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
171 172
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
173 174
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
175 176
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    return framework::OpKernelType(framework::ToDataType(t->type()),
                                   ctx.GetPlace());
  }
};

template <typename T>
class LayerNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *var = ctx.Input<Tensor>("Variance");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    const auto &x_dims = x->dims();

C
chengduoZH 已提交
214 215
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
C
chengduoZH 已提交
216 217
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
218 219 220 221 222 223

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

C
chengduoZH 已提交
224
    auto scale_map = ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), left, 1);
C
chengduoZH 已提交
225 226 227 228 229 230 231
    auto x_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
    auto d_y_map = ConstEigenMatrixMapRowMajor<T>(d_y->data<T>(), left, right);
    auto mean_map = ConstEigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = ConstEigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
232 233
      auto d_bias_map = EigenMatrixMapRowMajor<T>(d_bias->data<T>(), left, 1);
      d_bias_map = d_y_map.colwise().mean();
C
chengduoZH 已提交
234 235 236
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
237 238
      auto d_scale_map = EigenMatrixMapRowMajor<T>(d_scale->data<T>(), left, 1);
      auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
239 240
      // There are two equation to compute d_scale. One uses "Y" and the other
      // does not use "Y"
C
chengduoZH 已提交
241
      d_scale_map =
C
chengduoZH 已提交
242
          ((x_map - mean_map.replicate(1, right))
C
chengduoZH 已提交
243 244
               .cwiseProduct(
                   var_map.unaryExpr(inv_std_func).replicate(1, right))
C
chengduoZH 已提交
245
               .cwiseProduct(d_y_map))
C
chengduoZH 已提交
246 247
              .colwise()
              .mean();
C
chengduoZH 已提交
248 249 250 251 252
    }

    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
      auto d_x_map = EigenMatrixMapRowMajor<T>(d_x->data<T>(), left, right);
C
chengduoZH 已提交
253 254
      auto triple_product_func = [](T ele) { return ele * ele * ele; };
      auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
255
      // dy_dx
C
chengduoZH 已提交
256 257
      auto dx_end = var_map.unaryExpr(inv_std_func)
                        .cwiseProduct(scale_map)
C
chengduoZH 已提交
258 259 260
                        .replicate(1, right)
                        .cwiseProduct(d_y_map);
      // dy_dmean_dx
C
chengduoZH 已提交
261
      auto dx_mean = (T(-1.0) / right) *
C
chengduoZH 已提交
262 263
                     var_map.unaryExpr(inv_std_func)
                         .cwiseProduct(scale_map)
C
chengduoZH 已提交
264 265 266 267 268
                         .replicate(1, right)
                         .cwiseProduct(d_y_map)
                         .rowwise()
                         .sum()
                         .replicate(1, right);
C
chengduoZH 已提交
269
      // dy_var_dx
C
chengduoZH 已提交
270 271 272 273 274 275 276
      auto dvar_end_part = (x_map - mean_map.replicate(1, right))
                               .cwiseProduct(d_y_map)
                               .rowwise()
                               .sum();
      auto dvar_end = var_map.unaryExpr(inv_std_func)
                          .unaryExpr(triple_product_func)
                          .cwiseProduct(dvar_end_part)
C
chengduoZH 已提交
277
                          .cwiseProduct(scale_map)
C
chengduoZH 已提交
278
                          .replicate(1, right);
C
chengduoZH 已提交
279 280 281
      auto dx_var =
          (T(-1.0) / right) *
          (x_map - mean_map.replicate(1, right)).cwiseProduct(dvar_end);
C
chengduoZH 已提交
282

C
chengduoZH 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
      d_x_map = dx_end + dx_mean + dx_var;
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
            layer_norm_grad, ops::LayerNormGradOp);
REGISTER_OP_CPU_KERNEL(
    layer_norm,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>);