layer_norm_op.cc 10.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/layer_norm_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenMatrixMapRowMajor = Eigen::Map<
    Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
template <typename T>
using ConstEigenMatrixMapRowMajor = Eigen::Map<
    const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");

    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], 1);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], 1);

    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Mean", {ctx->GetInputDim("X")[0]});
    ctx->SetOutputDim("Variance", {ctx->GetInputDim("X")[0]});

    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LayerNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size 1 "
             "that is applied to the output");
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size 1 "
             "that is applied to the output");
    AddOutput("Y", "result after normalization");
    AddOutput("Mean", "Mean of the current mini batch.");
    AddOutput("Variance", "Variance of the current mini batch.");

    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
    AddAttr<std::vector<int>>("axis",
                              "(vector<int> default:{1, 1, 1}), the "
                              "axis to normalize.")
        .SetDefault({1, 2, 3});  // todo(zcd) : who to set axis

    AddComment(R"DOC(
Layer Normalization.

Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
)DOC");
  }
};

template <typename T>
class LayerNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();

    const int N = x_dims[0];
    const int sample_size = x->numel() / N;

    auto scale_data = scale->data<T>()[0];
    auto bias_data = bias->data<T>()[0];

    auto *output = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    output->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    int left = N, right = sample_size;
    auto input_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
    auto mean_map = EigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = EigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);
    auto output_map = EigenMatrixMapRowMajor<T>(output->data<T>(), left, right);

    auto squre = [](T ele) { return ele * ele; };
    auto add_epslion = [epsilon](T ele) { return ele + epsilon; };

    mean_map = input_map.rowwise().mean();
    var_map = (input_map - mean_map.replicate(1, right))
                  .unaryExpr(squre)
                  .rowwise()
                  .mean()
                  .unaryExpr(add_epslion);

    auto scale_inv_std = [scale_data](T ele) {
      return std::sqrt(1 / ele) * scale_data;
    };
    auto sub_bias = [bias_data](T ele) { return bias_data - ele; };

    output_map = (var_map.unaryExpr(scale_inv_std).replicate(1, right))
                     .cwiseProduct(input_map) +
                 var_map.unaryExpr(scale_inv_std)
                     .cwiseProduct(mean_map)
                     .unaryExpr(sub_bias)
                     .replicate(1, right);
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");

    const auto x_dims = ctx->GetInputDim("X");

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"), {1});
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"), {1});
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    return framework::OpKernelType(framework::ToDataType(t->type()),
                                   ctx.GetPlace());
  }
};

template <typename T>
class LayerNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *var = ctx.Input<Tensor>("Variance");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    const auto &x_dims = x->dims();
    const int N = x_dims[0];
    const int sample_size = x->numel() / N;
    int left = N, right = sample_size;

    auto scale_data = scale->data<T>()[0];

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto x_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
    auto d_y_map = ConstEigenMatrixMapRowMajor<T>(d_y->data<T>(), left, right);
    auto mean_map = ConstEigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = ConstEigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      d_bias->data<T>()[0] = d_y_map.sum();
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      auto inv_std = [](T ele) { return std::sqrt(1 / ele); };
      d_scale->data<T>()[0] =
          ((x_map - mean_map.replicate(1, right))
               .cwiseProduct(var_map.unaryExpr(inv_std).replicate(1, right))
               .cwiseProduct(d_y_map))
              .sum();  // also can use `y` to get d_scale_map
    }

    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
      auto d_x_map = EigenMatrixMapRowMajor<T>(d_x->data<T>(), left, right);
      auto triple_product = [](T ele) { return ele * ele * ele; };
      auto neg_inv_std = [](T ele) { return T(-1.0) * std::sqrt(1 / ele); };
      auto inv_std_scale_func = [scale_data](T ele) {
        return std::sqrt(1 / ele) * scale_data;
      };
      auto neg_inv_std_scale_func = [scale_data](T ele) {
        return T(-1.0) * std::sqrt(1 / ele) * scale_data;
      };
      // dy_dx
      auto dx_end = var_map.unaryExpr(inv_std_scale_func)
                        .replicate(1, right)
                        .cwiseProduct(d_y_map);
      // dy_dmean_dx
      auto dmean_end = var_map.unaryExpr(neg_inv_std_scale_func)
                           .replicate(1, right)
                           .cwiseProduct(d_y_map)
                           .rowwise()
                           .sum();
      auto dx_mean = (T(1.0) / right) * dmean_end.replicate(1, right);
      // dy_var_dx
      auto dvar_end_0 = (x_map - mean_map.replicate(1, right))
                            .cwiseProduct(d_y_map)
                            .rowwise()
                            .sum();
      auto dvar_end = var_map.unaryExpr(neg_inv_std)
                          .unaryExpr(triple_product)
                          .cwiseProduct(dvar_end_0);
      auto dx_var = (1.0f / right) *
                    (x_map - mean_map.replicate(1, right))
                        .cwiseProduct(dvar_end.replicate(1, right));

      d_x_map = dx_end + dx_mean + dx_var;
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
            layer_norm_grad, ops::LayerNormGradOp);
REGISTER_OP_CPU_KERNEL(
    layer_norm,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>);