inference_transpiler.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
L
Luo Tao 已提交
16 17
from framework import Program
from executor import global_scope
18 19 20 21
from . import core


class InferenceTranspiler:
L
Luo Tao 已提交
22
    def transpile(self, program, place, scope=None):
23
        '''
L
Luo Tao 已提交
24 25 26 27 28 29
        Transpile the program. Support only fuse batch normalization now.

        :param program: program to transpile 
        :type program: Program
        :param place: inference place 
        :type place: Place
L
Luo Tao 已提交
30 31
        :param scope: inference scope 
        :type scope: Scope or None
L
Luo Tao 已提交
32
        '''
L
Luo Tao 已提交
33 34 35 36 37 38 39 40 41 42
        if not isinstance(program, Program):
            raise TypeError("program should be as Program type")
        if not isinstance(place, core.CPUPlace) and not isinstance(
                place, core.CUDAPlace):
            raise TypeError("place should be as CPUPlace/CUDAPlace type")
        if scope is None:
            scope = global_scope()
        if not isinstance(scope, core.Scope):
            raise TypeError("scope should be as Scope type or None")
        self.fuse_batch_norm(program, place, scope)
L
Luo Tao 已提交
43

L
Luo Tao 已提交
44
    def fuse_batch_norm(self, program, place, scope):
L
Luo Tao 已提交
45 46
        '''
        Transpile the program by fused batch normalization.
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
 
        The batch normalization followed the convolution or fully connected layer 
        can be integrated with them. Doing so will give us a forward acceleration, 
        especially in environments like mobile or embedded.
                    
        For input X:
        - Conv process:        X = input * W + bias 
        - Batch norm process:  X' = (X - mean) / std 
        - Scale Process:       Y = a * X' + b

        After fuse into one operation:

        Y = (input * W + bias - mean) / std * a + b
          = input * a * W / std + ((bias - mean) / std * a + b)

        The operator transformation is: 
        - before:
          - conv->batch_norm->any_other_op (bias == 0)
          - conv->elementwise_add->batch_norm->any_other_op (bias != 0)
        - after: 
          - conv->elementwise_add->any_other_op
        
        The transpile stages are:
70
        1. insert elementwise_add op when bias == 0.
71
        2. fuse the batch_norm's parameters to conv and elementwise_add operators.
72 73 74
        3. remove batch_norm ops which are not used in any other ops.
        4. adjust the input of any_other_op to be the output of elementwise_add operator.
        5. remove unused variables.
75 76 77 78 79

        :param program: program to transpile 
        :type program: Program
        :param place: inference place 
        :type place: Place
L
Luo Tao 已提交
80 81
        :param scope: inference scope 
        :type scope: Scope
82 83 84
        '''
        self.scope = scope
        self.place = place
85
        self.block = program.block(0)
86 87
        self.input_map = {}  # store the input names should be adjusted 

88
        i = 0
89 90
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
91
            # TODO(luotao1): consider only conv2d now. fc would be delt later.
92
            if current_op.type in ['conv2d']:
L
Luo Tao 已提交
93 94 95
                # TODO(luotao1): consider single chain network now. 
                # For branch network, we counldn't use block.ops[i + 1] as 
                # the judgment condition.
96
                next_op = self.block.ops[i + 1]
97
                # conv2d without bias
98
                if (next_op.type == 'batch_norm'):
99 100 101
                    # insert bias op
                    bias_op = self._insert_bias_op(i + 1, current_op, next_op)
                    # fuse batch_norm
102
                    self._fuse_param(current_op, next_op, bias_op, 0)
103
                    # remove batch_norm_op
104
                    self.block.remove_op(i + 2)
105
                    i = i + 1
106 107 108 109 110 111 112 113 114
                # conv2d with bias, the next_op.type is elementwise_add
                elif (next_op.type == 'elementwise_add'):
                    next_next_op = self.block.ops[i + 2]
                    if (next_next_op.type == 'batch_norm'):
                        # fuse batch_norm
                        self._fuse_param(current_op, next_next_op, next_op, 1)
                        # remove batch_norm_op
                        self.block.remove_op(i + 2)
                        i = i + 1
115 116
            i = i + 1

117
        self._adjust_input()
118
        self._remove_unused_var()
L
Luo Tao 已提交
119 120 121
        # TODO(luotao): use clone() method to flush the program.desc in force, 
        # since some large program.desc will not be flushed immediately. 
        # And a better solution will be considered later.
L
Luo Tao 已提交
122
        program = program.clone()
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    # ====================== private transpiler functions =====================
    def _insert_bias_op(self, index, current_op, bn_op):
        '''
        Construct elementwise_add operator for adding bias 
        and insert it into program.
        
        :param index: insert location of bias_op
        :type index: Int
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :return: bias_op
        :rtype: Operator
        '''
        # The input of bias_op is current_op's output and Bias of bn_op
        # The output of bias_op is bn_op's output
141 142 143 144 145 146 147 148 149 150 151
        x_var = self.block.var(current_op.output("Output")[0])
        y_var = self.block.var(bn_op.input("Bias")[0])
        out_var = self.block.var(bn_op.output("Y")[0])

        bias_op = self.block.insert_op(
            index,
            type="elementwise_add",
            inputs={"X": x_var,
                    "Y": y_var},
            outputs={"Out": out_var},
            attrs={"axis": 1})  # dim_start=1
152 153
        return bias_op

154
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
155 156 157 158 159 160 161 162 163
        '''
        fuse the batch_norm_op' parameters to current_op (conv or fc)
        
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :param bias_op: elementwise_add operator for adding bias
        :type bias_op: Operator
164 165
        :param with_bias: If current operator has bias, with_bias = 1; otherwise 0. 
        :type with_bias: Int
166 167
        '''

L
Luo Tao 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        def _update_param(op, old_param_name, new_param):
            # For the sake of remaining the original variables the same as before,
            # create new variables in scope to store the new parameters.
            old_param_name = old_param_name[0]
            old_var = self.block.vars[old_param_name]
            new_param_name = old_param_name + '_fuse_bn'
            new_var = self.block.create_parameter(
                name=new_param_name.encode('ascii'),
                type=old_var.type,
                dtype=old_var.dtype,
                shape=old_var.shape)
            op.rename_input(old_param_name, new_param_name)
            self.scope.var(new_param_name)

            tensor = self.scope.find_var(new_param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)
184 185

        def _load_param(param_name):
L
Luo Tao 已提交
186
            return np.array(self.scope.find_var(param_name[0]).get_tensor())
187 188 189 190 191 192 193 194 195 196 197 198

        bias_bn = _load_param(bn_op.input("Bias"))  #Bias
        scale_bn = _load_param(bn_op.input("Scale"))  #Scale
        mean_bn = _load_param(bn_op.input("Mean"))  #Mean
        var_bn = _load_param(bn_op.input("Variance"))  #Variance

        # TODO(luotao1): consider only conv2d now. fc would be delt later.
        current_param = _load_param(current_op.input("Filter"))
        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
199 200 201 202
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
203 204 205 206 207 208 209 210 211
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

L
Luo Tao 已提交
212 213 214
        # update parameters
        _update_param(current_op, current_op.input("Filter"), dst_param)
        _update_param(bias_op, bias_op.input("Y"), bias)
215

216 217 218 219 220 221 222 223 224 225 226
        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]

    def _adjust_input(self):
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            for input_arg in current_op.input_arg_names:
                if input_arg in self.input_map:
                    current_op.rename_input(input_arg,
                                            self.input_map[input_arg])

227 228
    def _remove_unused_var(self):
        '''
229
        remove unused varibles in program
230 231
        '''
        args = []
232 233 234 235
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            args += current_op.input_arg_names
            args += current_op.output_arg_names
236 237
        args = list(set(args))  # unique the input and output arguments

238 239 240
        for var in self.block.vars.keys():
            if var not in args:
                self.block.remove_var(var)