inference_transpiler.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
import shutil
from . import core


class InferenceTranspiler:
    def transpile(self, program, scope, place):
        '''
L
Luo Tao 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37
        Transpile the program. Support only fuse batch normalization now.

        :param program: program to transpile 
        :type program: Program
        :param scope: inference scope 
        :type scope: Scope
        :param place: inference place 
        :type place: Place
        '''
        self.fuse_batch_norm(program, scope, place)

    def fuse_batch_norm(self, program, scope, place):
        '''
        Transpile the program by fused batch normalization.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 
        The batch normalization followed the convolution or fully connected layer 
        can be integrated with them. Doing so will give us a forward acceleration, 
        especially in environments like mobile or embedded.
                    
        For input X:
        - Conv process:        X = input * W + bias 
        - Batch norm process:  X' = (X - mean) / std 
        - Scale Process:       Y = a * X' + b

        After fuse into one operation:

        Y = (input * W + bias - mean) / std * a + b
          = input * a * W / std + ((bias - mean) / std * a + b)

        The operator transformation is: 
        - before:
          - conv->batch_norm->any_other_op (bias == 0)
          - conv->elementwise_add->batch_norm->any_other_op (bias != 0)
        - after: 
          - conv->elementwise_add->any_other_op
        
        The transpile stages are:
61
        1. insert elementwise_add op when bias == 0.
62
        2. fuse the batch_norm's parameters to conv and elementwise_add operators.
63 64 65
        3. remove batch_norm ops which are not used in any other ops.
        4. adjust the input of any_other_op to be the output of elementwise_add operator.
        5. remove unused variables.
66 67 68 69 70 71 72 73 74 75

        :param program: program to transpile 
        :type program: Program
        :param scope: inference scope 
        :type scope: Scope
        :param place: inference place 
        :type place: Place
        '''
        self.scope = scope
        self.place = place
76
        self.block = program.block(0)
77 78
        self.input_map = {}  # store the input names should be adjusted 

79
        i = 0
80 81
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
82
            # TODO(luotao1): consider only conv2d now. fc would be delt later.
83
            if current_op.type in ['conv2d']:
L
Luo Tao 已提交
84 85 86
                # TODO(luotao1): consider single chain network now. 
                # For branch network, we counldn't use block.ops[i + 1] as 
                # the judgment condition.
87
                next_op = self.block.ops[i + 1]
88
                # conv2d without bias
89
                if (next_op.type == 'batch_norm'):
90 91 92
                    # insert bias op
                    bias_op = self._insert_bias_op(i + 1, current_op, next_op)
                    # fuse batch_norm
93
                    self._fuse_param(current_op, next_op, bias_op, 0)
94
                    # remove batch_norm_op
95
                    self.block.remove_op(i + 2)
96
                    i = i + 1
97 98 99 100 101 102 103 104 105
                # conv2d with bias, the next_op.type is elementwise_add
                elif (next_op.type == 'elementwise_add'):
                    next_next_op = self.block.ops[i + 2]
                    if (next_next_op.type == 'batch_norm'):
                        # fuse batch_norm
                        self._fuse_param(current_op, next_next_op, next_op, 1)
                        # remove batch_norm_op
                        self.block.remove_op(i + 2)
                        i = i + 1
106 107
            i = i + 1

108
        self._adjust_input()
109
        self._remove_unused_var()
L
Luo Tao 已提交
110 111 112
        # TODO(luotao): use clone() method to flush the program.desc in force, 
        # since some large program.desc will not be flushed immediately. 
        # And a better solution will be considered later.
L
Luo Tao 已提交
113
        program = program.clone()
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    # ====================== private transpiler functions =====================
    def _insert_bias_op(self, index, current_op, bn_op):
        '''
        Construct elementwise_add operator for adding bias 
        and insert it into program.
        
        :param index: insert location of bias_op
        :type index: Int
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :return: bias_op
        :rtype: Operator
        '''
        # The input of bias_op is current_op's output and Bias of bn_op
        # The output of bias_op is bn_op's output
132 133 134 135 136 137 138 139 140 141 142
        x_var = self.block.var(current_op.output("Output")[0])
        y_var = self.block.var(bn_op.input("Bias")[0])
        out_var = self.block.var(bn_op.output("Y")[0])

        bias_op = self.block.insert_op(
            index,
            type="elementwise_add",
            inputs={"X": x_var,
                    "Y": y_var},
            outputs={"Out": out_var},
            attrs={"axis": 1})  # dim_start=1
143 144
        return bias_op

145
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
146 147 148 149 150 151 152 153 154
        '''
        fuse the batch_norm_op' parameters to current_op (conv or fc)
        
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :param bias_op: elementwise_add operator for adding bias
        :type bias_op: Operator
155 156
        :param with_bias: If current operator has bias, with_bias = 1; otherwise 0. 
        :type with_bias: Int
157 158
        '''

L
Luo Tao 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        def _update_param(op, old_param_name, new_param):
            # For the sake of remaining the original variables the same as before,
            # create new variables in scope to store the new parameters.
            old_param_name = old_param_name[0]
            old_var = self.block.vars[old_param_name]
            new_param_name = old_param_name + '_fuse_bn'
            new_var = self.block.create_parameter(
                name=new_param_name.encode('ascii'),
                type=old_var.type,
                dtype=old_var.dtype,
                shape=old_var.shape)
            op.rename_input(old_param_name, new_param_name)
            self.scope.var(new_param_name)

            tensor = self.scope.find_var(new_param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)
175 176

        def _load_param(param_name):
L
Luo Tao 已提交
177
            return np.array(self.scope.find_var(param_name[0]).get_tensor())
178 179 180 181 182 183 184 185 186 187 188 189

        bias_bn = _load_param(bn_op.input("Bias"))  #Bias
        scale_bn = _load_param(bn_op.input("Scale"))  #Scale
        mean_bn = _load_param(bn_op.input("Mean"))  #Mean
        var_bn = _load_param(bn_op.input("Variance"))  #Variance

        # TODO(luotao1): consider only conv2d now. fc would be delt later.
        current_param = _load_param(current_op.input("Filter"))
        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
190 191 192 193
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
194 195 196 197 198 199 200 201 202
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

L
Luo Tao 已提交
203 204 205
        # update parameters
        _update_param(current_op, current_op.input("Filter"), dst_param)
        _update_param(bias_op, bias_op.input("Y"), bias)
206

207 208 209 210 211 212 213 214 215 216 217
        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]

    def _adjust_input(self):
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            for input_arg in current_op.input_arg_names:
                if input_arg in self.input_map:
                    current_op.rename_input(input_arg,
                                            self.input_map[input_arg])

218 219
    def _remove_unused_var(self):
        '''
220
        remove unused varibles in program
221 222
        '''
        args = []
223 224 225 226
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            args += current_op.input_arg_names
            args += current_op.output_arg_names
227 228
        args = list(set(args))  # unique the input and output arguments

229 230 231
        for var in self.block.vars.keys():
            if var not in args:
                self.block.remove_var(var)